基于其他数据框中的列计算,填写数据框中的NAS值

发布于 2025-01-19 11:07:08 字数 4691 浏览 0 评论 0原文

我有 2 个数据框。 RPRP2。我的目标是根据以下条件填充 RPCountry_1Country_2NAs

1.If RP 的单元格已经具有值,保持原样。

2.如果有 NA,则查看该单元格的 TreatmenAreaSubarea,并找到同一对 TreatmenAreaRP2 中的 Subarea,然后:

a. 将此值与 RP2PFaverage 列相乘,然后除以 100。

b.如果RP2 中的相对单元格也是 NA,然后将 RP 中的值保留为 NA

RP<-structure(list(ProductFamily = c("PF_1", "PF_10", "PF_10", "PF_100", 
"PF_100", "PF_101", "PF_102", "PF_102", "PF_102", "PF_102", "PF_103", 
"PF_103", "PF_104", "PF_105", "PF_106", "PF_106", "PF_106", "PF_106", 
"PF_107", "PF_108", "PF_109", "PF_11", "PF_110", "PF_110", "PF_111", 
"PF_111", "PF_111", "PF_112", "PF_112", "PF_113", "PF_113", "PF_113", 
"PF_114", "PF_115", "PF_115", "PF_116", "PF_117", "PF_118", "PF_119", 
"PF_12", "PF_12", "PF_12", "PF_120", "PF_120", "PF_120", "PF_120", 
"PF_120", "PF_120", "PF_121", "PF_122"), TreatmenArea = c("TA_7", 
"TA_2", "TA_2", "TA_6", "TA_6", "TA_2", "TA_2", "TA_2", "TA_2", 
"TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", 
"TA_2", "TA_2", "TA_2", "TA_2", "TA_7", "TA_2", "TA_2", "TA_7", 
"TA_7", "TA_7", "TA_7", "TA_7", "TA_2", "TA_2", "TA_2", "TA_6", 
"TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_5", "TA_5", 
"TA_5", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_4", 
"TA_4"), Subarea = c("SA_16", "SA_5", "SA_5", "SA_15", "SA_15", 
"SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", 
"SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", 
"SA_17", "SA_6", "SA_6", "SA_22", "SA_22", "SA_22", "SA_22", 
"SA_22", "SA_6", "SA_6", "SA_6", "SA_15", "SA_6", "SA_6", "SA_6", 
"SA_6", "SA_6", "SA_6", "SA_11", "SA_11", "SA_11", "SA_6", "SA_6", 
"SA_6", "SA_6", "SA_6", "SA_6", "SA_10", "SA_10"), Country_1 = c(NA, 
NA, NA, NA, NA, 92.6961421759861, NA, NA, NA, NA, 78.3001808318264,NA, NA, NA, 106.832963501416, 0.613496932515337, 104.21011973735, 
NA, NA, NA, NA, NA, 99.5238622522423, NA, NA, NA, NA, NA, NA, 
89.0343347639485, NA, NA, NA, NA, NA, NA, 101.231684009344, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Country_2 = c(NA, 
NA, 161.55950752394, NA, NA, NA, NA, NA, 59.1346153846154, NA, 
NA, NA, NA, 128.113063407181, 93.3812839543959, NA, NA, NA, 137.724550898204, 
NA, NA, NA, NA, 90.1602849510241, 37.3939722071828, NA, NA, 40.9756097560976, 
NA, NA, NA, 87.0095902353967, NA, NA, NA, 50.4591590140164, 92.1639413888299, 
44.7601588756493, NA, NA, NA, NA, NA, 100.053835800808, NA, NA, 
NA, NA, 136.420722135008, NA)), row.names = c(NA, 50L), class = "data.frame")

,并且 RP2

RP2<-structure(list(TreatmenArea = c("TA_1", "TA_1", "TA_1", "TA_1", 
"TA_2", "TA_2", "TA_2", "TA_3", "TA_4", "TA_4", "TA_5", "TA_5", 
"TA_5", "TA_6", "TA_6", "TA_7", "TA_7", "TA_7", "TA_7", "TA_7", 
"TA_7", "TA_7", "TA_7", "TA_8", "TA_9"), Subarea = c("SA_1", 
"SA_2", "SA_3", "SA_4", "SA_5", "SA_6", "SA_7", "SA_8", "SA_10", 
"SA_9", "SA_11", "SA_12", "SA_13", "SA_14", "SA_15", "SA_16", 
"SA_17", "SA_18", "SA_19", "SA_20", "SA_21", "SA_22", "SA_23", 
"SA_24", "SA_25"), Country_1 = c(101.37519256645, 105.268942332558, 
100.49933368058, 104.531597221684, NaN, 83.4404308144341, 86.2833044714836, 
81.808967345926, 79.6786979951661, 77.6863475527052, NaN, 78.3001808318264, 
112.499238782021, 113.526674294436, NaN, 108.350959378962, NaN, 
NaN, 102.243471199266, NaN, 104.323270355678, NaN, NaN, NaN, 
100), Country_2 = c(98.7267717862572, 83.9572019653478, 97.164068306148, 
103.654771613923, 161.55950752394, 75.4091957339533, 96.5255996196344, 
99.8317785594128, 88.1477193135348, NaN, NaN, NaN, 151.411687458963, 
107.652477161141, NaN, NaN, NaN, NaN, 92.4695215620261, NaN, 
88.9890571623243, 39.1847909816402, 87.0642912470953, NaN, NaN
), PFaverage = c(9.09293100169062, 16.2821052631579, 9.76688333333333, 
13.4754047619048, 17.8741666666667, 9.42546567085954, 12.6145188492064, 
12.4536666666667, 7.36169471153846, 13.1581818181818, 21.0866666666667, 
9.58, 16.2525049019608, 11.552822039072, 12.6908333333333, 20.5489611111111, 
11.99, 7.19134920634921, 8.51728472222222, 5.97, 12.2264183501684,6.37925, 16.1375, 11.9384615384615, 15.9185714285714)), class = c("data.frame"), row.names = c(NA, -25L)) 

If for例如,我们检查 RP 中 Country_1 的第一行,我们发现它的 NA 和它的 SubareaSA_16,所以我们移动到 RP2 并检查相对Country_1Subarea SA_16 的值为 108.35。因此计算结果为 108.35*20.54(PFaverage)/100

I have 2 dataframes. The RP and the RP2. My goal is to fill the NAs of RP columns Country_1 and Country_2 based on the conditions below:

1.If a cell of RP has already value leave it as it is.

2.If it has NA then see the TreatmenArea and Subarea of that cell and find the same pair of TreatmenArea, Subarea in RP2 then:

a.multiply this value with the PFaverage column of RP2 and divide by 100.

b.if the relative cell in RP2 is NA as well then leave the value in RP as NA

RP<-structure(list(ProductFamily = c("PF_1", "PF_10", "PF_10", "PF_100", 
"PF_100", "PF_101", "PF_102", "PF_102", "PF_102", "PF_102", "PF_103", 
"PF_103", "PF_104", "PF_105", "PF_106", "PF_106", "PF_106", "PF_106", 
"PF_107", "PF_108", "PF_109", "PF_11", "PF_110", "PF_110", "PF_111", 
"PF_111", "PF_111", "PF_112", "PF_112", "PF_113", "PF_113", "PF_113", 
"PF_114", "PF_115", "PF_115", "PF_116", "PF_117", "PF_118", "PF_119", 
"PF_12", "PF_12", "PF_12", "PF_120", "PF_120", "PF_120", "PF_120", 
"PF_120", "PF_120", "PF_121", "PF_122"), TreatmenArea = c("TA_7", 
"TA_2", "TA_2", "TA_6", "TA_6", "TA_2", "TA_2", "TA_2", "TA_2", 
"TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", 
"TA_2", "TA_2", "TA_2", "TA_2", "TA_7", "TA_2", "TA_2", "TA_7", 
"TA_7", "TA_7", "TA_7", "TA_7", "TA_2", "TA_2", "TA_2", "TA_6", 
"TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_5", "TA_5", 
"TA_5", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_2", "TA_4", 
"TA_4"), Subarea = c("SA_16", "SA_5", "SA_5", "SA_15", "SA_15", 
"SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", 
"SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", "SA_6", 
"SA_17", "SA_6", "SA_6", "SA_22", "SA_22", "SA_22", "SA_22", 
"SA_22", "SA_6", "SA_6", "SA_6", "SA_15", "SA_6", "SA_6", "SA_6", 
"SA_6", "SA_6", "SA_6", "SA_11", "SA_11", "SA_11", "SA_6", "SA_6", 
"SA_6", "SA_6", "SA_6", "SA_6", "SA_10", "SA_10"), Country_1 = c(NA, 
NA, NA, NA, NA, 92.6961421759861, NA, NA, NA, NA, 78.3001808318264,NA, NA, NA, 106.832963501416, 0.613496932515337, 104.21011973735, 
NA, NA, NA, NA, NA, 99.5238622522423, NA, NA, NA, NA, NA, NA, 
89.0343347639485, NA, NA, NA, NA, NA, NA, 101.231684009344, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Country_2 = c(NA, 
NA, 161.55950752394, NA, NA, NA, NA, NA, 59.1346153846154, NA, 
NA, NA, NA, 128.113063407181, 93.3812839543959, NA, NA, NA, 137.724550898204, 
NA, NA, NA, NA, 90.1602849510241, 37.3939722071828, NA, NA, 40.9756097560976, 
NA, NA, NA, 87.0095902353967, NA, NA, NA, 50.4591590140164, 92.1639413888299, 
44.7601588756493, NA, NA, NA, NA, NA, 100.053835800808, NA, NA, 
NA, NA, 136.420722135008, NA)), row.names = c(NA, 50L), class = "data.frame")

and the RP2

RP2<-structure(list(TreatmenArea = c("TA_1", "TA_1", "TA_1", "TA_1", 
"TA_2", "TA_2", "TA_2", "TA_3", "TA_4", "TA_4", "TA_5", "TA_5", 
"TA_5", "TA_6", "TA_6", "TA_7", "TA_7", "TA_7", "TA_7", "TA_7", 
"TA_7", "TA_7", "TA_7", "TA_8", "TA_9"), Subarea = c("SA_1", 
"SA_2", "SA_3", "SA_4", "SA_5", "SA_6", "SA_7", "SA_8", "SA_10", 
"SA_9", "SA_11", "SA_12", "SA_13", "SA_14", "SA_15", "SA_16", 
"SA_17", "SA_18", "SA_19", "SA_20", "SA_21", "SA_22", "SA_23", 
"SA_24", "SA_25"), Country_1 = c(101.37519256645, 105.268942332558, 
100.49933368058, 104.531597221684, NaN, 83.4404308144341, 86.2833044714836, 
81.808967345926, 79.6786979951661, 77.6863475527052, NaN, 78.3001808318264, 
112.499238782021, 113.526674294436, NaN, 108.350959378962, NaN, 
NaN, 102.243471199266, NaN, 104.323270355678, NaN, NaN, NaN, 
100), Country_2 = c(98.7267717862572, 83.9572019653478, 97.164068306148, 
103.654771613923, 161.55950752394, 75.4091957339533, 96.5255996196344, 
99.8317785594128, 88.1477193135348, NaN, NaN, NaN, 151.411687458963, 
107.652477161141, NaN, NaN, NaN, NaN, 92.4695215620261, NaN, 
88.9890571623243, 39.1847909816402, 87.0642912470953, NaN, NaN
), PFaverage = c(9.09293100169062, 16.2821052631579, 9.76688333333333, 
13.4754047619048, 17.8741666666667, 9.42546567085954, 12.6145188492064, 
12.4536666666667, 7.36169471153846, 13.1581818181818, 21.0866666666667, 
9.58, 16.2525049019608, 11.552822039072, 12.6908333333333, 20.5489611111111, 
11.99, 7.19134920634921, 8.51728472222222, 5.97, 12.2264183501684,6.37925, 16.1375, 11.9384615384615, 15.9185714285714)), class = c("data.frame"), row.names = c(NA, -25L)) 

If for example we check first row of Country_1 in RP we see that its NA and its Subarea is SA_16 so we move to RP2 and check that the relative value for Country_1 and Subarea SA_16 is 108.35. So the calculation is 108.35*20.54(PFaverage)/100.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

眼眸印温柔 2025-01-26 11:07:09
library(dplyr)

RP2 %>% 
  mutate_at(c("Country_1", "Country_2"), 
            list(PFa = ~. * PFaverage / 100)) %>% 
  select(TreatmenArea, Subarea, contains("PFa")) %>% 
  right_join(RP, . , by = c("TreatmenArea" , "Subarea")) %>% 
  mutate(Country_1 = coalesce(Country_1, Country_1_PFa),
         Country_2 = coalesce(Country_2, Country_2_PFa)) %>% 
  select(-contains("PFa")) 

#>    ProductFamily TreatmenArea Subarea   Country_1  Country_2
#> 1           PF_1         TA_7   SA_16  22.2649965        NaN
#> 2          PF_10         TA_2    SA_5         NaN  28.877416
#> 3          PF_10         TA_2    SA_5         NaN 161.559508
#> 4         PF_100         TA_6   SA_15         NaN        NaN
#> 5         PF_100         TA_6   SA_15         NaN        NaN
#> 6         PF_101         TA_2    SA_6  92.6961422   7.107668
#> 7         PF_102         TA_2    SA_6   7.8646492   7.107668
#> 8         PF_102         TA_2    SA_6   7.8646492   7.107668
#> 9         PF_102         TA_2    SA_6   7.8646492  59.134615
#> 10        PF_102         TA_2    SA_6   7.8646492   7.107668
...

library(dplyr)

RP2 %>% 
  mutate_at(c("Country_1", "Country_2"), 
            list(PFa = ~. * PFaverage / 100)) %>% 
  select(TreatmenArea, Subarea, contains("PFa")) %>% 
  right_join(RP, . , by = c("TreatmenArea" , "Subarea")) %>% 
  mutate(Country_1 = coalesce(Country_1, Country_1_PFa),
         Country_2 = coalesce(Country_2, Country_2_PFa)) %>% 
  select(-contains("PFa")) 

#>    ProductFamily TreatmenArea Subarea   Country_1  Country_2
#> 1           PF_1         TA_7   SA_16  22.2649965        NaN
#> 2          PF_10         TA_2    SA_5         NaN  28.877416
#> 3          PF_10         TA_2    SA_5         NaN 161.559508
#> 4         PF_100         TA_6   SA_15         NaN        NaN
#> 5         PF_100         TA_6   SA_15         NaN        NaN
#> 6         PF_101         TA_2    SA_6  92.6961422   7.107668
#> 7         PF_102         TA_2    SA_6   7.8646492   7.107668
#> 8         PF_102         TA_2    SA_6   7.8646492   7.107668
#> 9         PF_102         TA_2    SA_6   7.8646492  59.134615
#> 10        PF_102         TA_2    SA_6   7.8646492   7.107668
...

Created on 2022-04-06 by the reprex package (v2.0.0)

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文