使用LSTM进行时间序列问题形成输入数据
我有一个数据集,其中包含有关植物的信息,例如 ID、年龄、重量、花瓣颜色、高度、获取信息的日期和时间。身高是目标,所以我想预测身高。
我的训练数据集示例:
|Date | time | ID | color | weight(kilogram) | height(centimeter) | age ( in days) |
| ----| -----| -- | ---- -| ---------------- | -------------------| ---------------|
15/09/2021| 8pm |14 | yelow | 2 |50|12
13/04/2021| 8am |3 | pink| 1 |25|10
13/04/2021| 10pm |3| pink| 1 |30|10
4/06/2021 | 4pm |5 | green| 2 |50|5
我们可以获得一天中不同时间的植物信息。我想根据几个特征来预测大小。
我的测试数据集示例:
|Date | time | ID | color | weight(kilogram) | age ( in days) |
| ----| -----| -- | ---- -| ---------------- | ---------------|
15/09/2021| 8pm |15| yelow | 2 |12
13/04/2021| 8am |13 | pink| 1 |10
13/04/2021| 10pm |13| pink| 1 |10
4/06/2021 | 4pm |55 | green| 2 |5
在预测期间,我们具有与训练中相同的特征,但没有高度(目标)。例如,我只想用我的特征进行预测,而不是在一周内进行完整的预测。
我想考虑暂时性的概念,即根据过去的高度来预测高度。
我很难理解输入表格。有人可以向我解释带有这种类型的数据集的 lstm 中输入数据的形式吗?
先感谢您
I have a dataset which contains informations about plants like ID,age, weight, petal color, height, date and time on which the information is taken. Height is the target, so i want to predict height.
Example of my train dataset:
|Date | time | ID | color | weight(kilogram) | height(centimeter) | age ( in days) |
| ----| -----| -- | ---- -| ---------------- | -------------------| ---------------|
15/09/2021| 8pm |14 | yelow | 2 |50|12
13/04/2021| 8am |3 | pink| 1 |25|10
13/04/2021| 10pm |3| pink| 1 |30|10
4/06/2021 | 4pm |5 | green| 2 |50|5
We can have information on plants at different times of the day. I would like to predict the size based on several features.
Example of my test dataset:
|Date | time | ID | color | weight(kilogram) | age ( in days) |
| ----| -----| -- | ---- -| ---------------- | ---------------|
15/09/2021| 8pm |15| yelow | 2 |12
13/04/2021| 8am |13 | pink| 1 |10
13/04/2021| 10pm |13| pink| 1 |10
4/06/2021 | 4pm |55 | green| 2 |5
During the prediction we have the same features as in the training without the height (target). I only want to make predictions with my features and not make a complete prediction over a week for example.
I would like to take into account the notion of temporality, i.e. make a prediction of the height according to the past height.
I am having difficulty understanding the input form. Can someone explain to me the form of input data in an lstm with with a dataset of this type?
thank you in advance
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论