值错误:太多值无法解包(预期 2)深度神经网络 - 应用

发布于 2025-01-19 05:20:55 字数 4107 浏览 1 评论 0原文

我写了此功能:

def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):

    """
    Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
    
    Arguments:
    X -- input data, of shape (n_x, number of examples)
    Y -- true "label" vector (containing 1 if cat, 0 if non-cat), of shape (1, number of examples)
    layers_dims -- dimensions of the layers (n_x, n_h, n_y)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- If set to True, this will print the cost every 100 iterations 
    
    Returns:
    parameters -- a dictionary containing W1, W2, b1, and b2
    """
    
    np.random.seed(1)
    grads = {}
    costs = []                              # to keep track of the cost
    m = X.shape[1]                           # number of examples
    #(n_x, n_h, n_y) = layers_dims
    layers_dims=(n_x, n_h, n_y)
    # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
    ### START CODE HERE ### (≈ 1 line of code)
    parameters = initialize_parameters(n_x, n_h, n_y)
    ### END CODE HERE ###
    
    # Get W1, b1, W2 and b2 from the dictionary parameters.
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Loop (gradient descent)

    for i in range(0, num_iterations):

        # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2".
        ### START CODE HERE ### (≈ 2 lines of code)
        A1, cache1 = linear_activation_forward(X, W1, b1, activation="relu")
        A2, cache2 = linear_activation_forward(A1, W2, b2, activation="sigmoid")
        ### END CODE HERE ###
        
        # Compute cost
        ### START CODE HERE ### (≈ 1 line of code)
        cost = compute_cost(A2, Y)
        ### END CODE HERE ###
        
        # Initializing backward propagation
        dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
        
        # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
        ### START CODE HERE ### (≈ 2 lines of code)
        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation="sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation="relu")
        ### END CODE HERE ###
        
        # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
        grads['dW1'] = dW1
        grads['db1'] = db1
        grads['dW2'] = dW2
        grads['db2'] = db2
        
        # Update parameters.
        ### START CODE HERE ### (approx. 1 line of code)
        parameters = update_parameters(parameters, grads, learning_rate)
        
        # Retrieve W1, b1, W2, b2 from parameters
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Print the cost every 100 training example
        if print_cost and i % 100 == 0:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if print_cost and i % 100 == 0:
            costs.append(cost)
       
    # plot the cost

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()
    
    return parameters

不过

parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2, print_cost=False)

print("Cost after first iteration: " + str(costs[0]))

two_layer_model_test(two_layer_model)

是我收到此错误:

ValueError Trackback(最近的电话最后一次) 在 ----> 1个参数,成本= tout_layer_model(train_x,train_y,layers_dims =(n_x,n_h,n_y),num_iterations = 2,print_cost = false) 2 3打印(“第一次迭代后的成本:” + str(成本[0])) 4 5 twe_layer_model_test(twe_layer_model)

valueerror:太多值无法打开包装(预期2),

请帮助我。

I wrote this function:

def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):

    """
    Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
    
    Arguments:
    X -- input data, of shape (n_x, number of examples)
    Y -- true "label" vector (containing 1 if cat, 0 if non-cat), of shape (1, number of examples)
    layers_dims -- dimensions of the layers (n_x, n_h, n_y)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- If set to True, this will print the cost every 100 iterations 
    
    Returns:
    parameters -- a dictionary containing W1, W2, b1, and b2
    """
    
    np.random.seed(1)
    grads = {}
    costs = []                              # to keep track of the cost
    m = X.shape[1]                           # number of examples
    #(n_x, n_h, n_y) = layers_dims
    layers_dims=(n_x, n_h, n_y)
    # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
    ### START CODE HERE ### (≈ 1 line of code)
    parameters = initialize_parameters(n_x, n_h, n_y)
    ### END CODE HERE ###
    
    # Get W1, b1, W2 and b2 from the dictionary parameters.
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Loop (gradient descent)

    for i in range(0, num_iterations):

        # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2".
        ### START CODE HERE ### (≈ 2 lines of code)
        A1, cache1 = linear_activation_forward(X, W1, b1, activation="relu")
        A2, cache2 = linear_activation_forward(A1, W2, b2, activation="sigmoid")
        ### END CODE HERE ###
        
        # Compute cost
        ### START CODE HERE ### (≈ 1 line of code)
        cost = compute_cost(A2, Y)
        ### END CODE HERE ###
        
        # Initializing backward propagation
        dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
        
        # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
        ### START CODE HERE ### (≈ 2 lines of code)
        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation="sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation="relu")
        ### END CODE HERE ###
        
        # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
        grads['dW1'] = dW1
        grads['db1'] = db1
        grads['dW2'] = dW2
        grads['db2'] = db2
        
        # Update parameters.
        ### START CODE HERE ### (approx. 1 line of code)
        parameters = update_parameters(parameters, grads, learning_rate)
        
        # Retrieve W1, b1, W2, b2 from parameters
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Print the cost every 100 training example
        if print_cost and i % 100 == 0:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if print_cost and i % 100 == 0:
            costs.append(cost)
       
    # plot the cost

    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()
    
    return parameters

and then

parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2, print_cost=False)

print("Cost after first iteration: " + str(costs[0]))

two_layer_model_test(two_layer_model)

And then I received this error:

ValueError Traceback (most recent call last)
in
----> 1 parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2, print_cost=False)
2
3 print("Cost after first iteration: " + str(costs[0]))
4
5 two_layer_model_test(two_layer_model)

ValueError: too many values to unpack (expected 2)

Please help me.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

反目相谮 2025-01-26 05:20:56

的正确代码

这是来自 mhmd nojim 1- from public_tests import *
在 jupyter 的第一个单元格中导入 public_tests

import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from  scipy import ndimage
from dnn_app_utils_v3 import *
from public_tests import *

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

np.random.seed(1)

2- 在 deftwo_layer_model 中替换以下函数

### GRADED FUNCTION: two_layer_model

def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):

 
np.random.seed(1)
grads = {}
costs = []                              # to keep track of the cost
m = X.shape[1]                           # number of examples
(n_x, n_h, n_y) = layers_dims

# Initialize parameters dictionary, by calling one of the functions you'd previously implemented
### START CODE HERE ### (≈ 1 line of code)
parameters = initialize_parameters(n_x, n_h, n_y)

# YOUR CODE ENDS HERE

# Get W1, b1, W2 and b2 from the dictionary parameters.
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]

# Loop (gradient descent)

for i in range(0, num_iterations):

    # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1, cache1 = linear_activation_forward(X, W1, b1, activation = 'relu')
    A2, cache2 = linear_activation_forward(A1, W2, b2, activation = 'sigmoid')
    
    # YOUR CODE ENDS HERE
    
    # Compute cost
    #(≈ 1 line of code)
    # cost = ...
    # YOUR CODE STARTS HERE
    cost = compute_cost(A2, Y)
    ### END CODE HERE ###
    
    # Initializing backward propagation
    dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
    
    # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
    ### START CODE HERE ### (≈ 2 lines of code)
    dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation = 'sigmoid')
    dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation = 'relu')
    ### END CODE HERE ###
    
    # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
    grads['dW1'] = dW1
    grads['db1'] = db1
    grads['dW2'] = dW2
    grads['db2'] = db2
    
    # Update parameters.
    ### START CODE HERE ### (approx. 1 line of code)
    parameters = update_parameters(parameters, grads, learning_rate)
    
    # YOUR CODE ENDS HERE

    # Retrieve W1, b1, W2, b2 from parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Print the cost every 100 training example
    if print_cost and i % 100 == 0 or i == num_iterations - 1:
        print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
    if i % 100 == 0 or i == num_iterations:
        costs.append(cost)
   

return parameters , costs

this is the correct code from mhmd nojim

1- from public_tests import *
in the first cell in jupyter to imprt public_tests

import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from  scipy import ndimage
from dnn_app_utils_v3 import *
from public_tests import *

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

np.random.seed(1)

2- in def two_layer_model replace the following function

### GRADED FUNCTION: two_layer_model

def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):

 
np.random.seed(1)
grads = {}
costs = []                              # to keep track of the cost
m = X.shape[1]                           # number of examples
(n_x, n_h, n_y) = layers_dims

# Initialize parameters dictionary, by calling one of the functions you'd previously implemented
### START CODE HERE ### (≈ 1 line of code)
parameters = initialize_parameters(n_x, n_h, n_y)

# YOUR CODE ENDS HERE

# Get W1, b1, W2 and b2 from the dictionary parameters.
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]

# Loop (gradient descent)

for i in range(0, num_iterations):

    # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1, W2, b2". Output: "A1, cache1, A2, cache2".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1, cache1 = linear_activation_forward(X, W1, b1, activation = 'relu')
    A2, cache2 = linear_activation_forward(A1, W2, b2, activation = 'sigmoid')
    
    # YOUR CODE ENDS HERE
    
    # Compute cost
    #(≈ 1 line of code)
    # cost = ...
    # YOUR CODE STARTS HERE
    cost = compute_cost(A2, Y)
    ### END CODE HERE ###
    
    # Initializing backward propagation
    dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
    
    # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
    ### START CODE HERE ### (≈ 2 lines of code)
    dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation = 'sigmoid')
    dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation = 'relu')
    ### END CODE HERE ###
    
    # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
    grads['dW1'] = dW1
    grads['db1'] = db1
    grads['dW2'] = dW2
    grads['db2'] = db2
    
    # Update parameters.
    ### START CODE HERE ### (approx. 1 line of code)
    parameters = update_parameters(parameters, grads, learning_rate)
    
    # YOUR CODE ENDS HERE

    # Retrieve W1, b1, W2, b2 from parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Print the cost every 100 training example
    if print_cost and i % 100 == 0 or i == num_iterations - 1:
        print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
    if i % 100 == 0 or i == num_iterations:
        costs.append(cost)
   

return parameters , costs
青衫负雪 2025-01-26 05:20:56

在您的函数twe_layer_model中,您仅返回参数
如果将行返回参数返回参数,则代码将工作

In your function two_layer_model, you return only the parameters.
If you replace the line return parameters with return parameters, costs then your code will work

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文