当我训练回归损失时,损失很大

发布于 2025-01-18 22:15:23 字数 2937 浏览 2 评论 0 原文

我想从图像中预测学生的中心。因此,我使用了带有3个凹层的CNN。 因此输入是图像,输出是坐标(x,y)。 我的模型是:

from keras.layers import Layer, Conv2D, MaxPooling2D, UpSampling2D, Dropout,Input ,concatenate, Dense
from keras.models import Model
tf.keras.layers.GlobalAveragePooling2D(
    data_format=None, keepdims=False
)
 
def get_model():
    img = Input(shape=(None, None, 3 ))
    conv1_1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(img)
    conv1_2 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv1_1)
    pool1 = MaxPooling2D((2, 2))(conv1_2)
    
    conv2_1 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool1)
    conv2_2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv2_1)
    
    conv3_1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv2_2)
    conv3_2 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv3_1)
    pool3 = MaxPooling2D((2, 2))(conv3_2)
        
    conv4_1 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool3)
    conv4_2 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv4_1)
    pool4 = MaxPooling2D((2, 2))(conv4_2)
    
    conv5_1 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool4)
    conv5_2 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv5_1)
    conv5_2 = Dropout(0.5)(conv5_2)
    conv5_3 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv5_2)
    pool5 = MaxPooling2D((2, 2))(conv5_3)
    
    conv6_1 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool5)
    conv6_1 = Dropout(0.5)(conv6_1)
    conv6_2 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv6_1)
    pool6 = MaxPooling2D((2, 2))(conv6_2)
    
    conv7_1 = Conv2D(1024, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool6)
    pool7 = MaxPooling2D((2, 2))(conv7_1)

    conv8_1 = Conv2D(1024, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool7)
    Global_pooling = tf.keras.layers.GlobalAveragePooling2D()(conv8_1)

    x = Dense(500, activation='relu')(Global_pooling)
    x = Dense(256, activation='relu')(x)
    x = Dense(128, activation='relu')(x)
    prediction = Dense(2, activation='linear')(x) 
 
    model = Model(inputs=[img], outputs=[prediction])
    #model.summary()
    return model 

我在培训中的“ MSE”遇到了很大的错误。问题是什么? 我的数据问题吗? 这是我在COLAB中的链接: 比你的帮助

I want to predict the center of the pupil from an image. so I used a CNN with 3 Dence layer.
so the input is an image and the output is a coordinate (X,Y).
my model is :

from keras.layers import Layer, Conv2D, MaxPooling2D, UpSampling2D, Dropout,Input ,concatenate, Dense
from keras.models import Model
tf.keras.layers.GlobalAveragePooling2D(
    data_format=None, keepdims=False
)
 
def get_model():
    img = Input(shape=(None, None, 3 ))
    conv1_1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(img)
    conv1_2 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv1_1)
    pool1 = MaxPooling2D((2, 2))(conv1_2)
    
    conv2_1 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool1)
    conv2_2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv2_1)
    
    conv3_1 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv2_2)
    conv3_2 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv3_1)
    pool3 = MaxPooling2D((2, 2))(conv3_2)
        
    conv4_1 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool3)
    conv4_2 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv4_1)
    pool4 = MaxPooling2D((2, 2))(conv4_2)
    
    conv5_1 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool4)
    conv5_2 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv5_1)
    conv5_2 = Dropout(0.5)(conv5_2)
    conv5_3 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv5_2)
    pool5 = MaxPooling2D((2, 2))(conv5_3)
    
    conv6_1 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool5)
    conv6_1 = Dropout(0.5)(conv6_1)
    conv6_2 = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(conv6_1)
    pool6 = MaxPooling2D((2, 2))(conv6_2)
    
    conv7_1 = Conv2D(1024, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool6)
    pool7 = MaxPooling2D((2, 2))(conv7_1)

    conv8_1 = Conv2D(1024, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(pool7)
    Global_pooling = tf.keras.layers.GlobalAveragePooling2D()(conv8_1)

    x = Dense(500, activation='relu')(Global_pooling)
    x = Dense(256, activation='relu')(x)
    x = Dense(128, activation='relu')(x)
    prediction = Dense(2, activation='linear')(x) 
 
    model = Model(inputs=[img], outputs=[prediction])
    #model.summary()
    return model 

and I got a very large error with "MSE" in training. what is the problem?
Is the problem with my data?
it's my link in colab: https://colab.research.google.com/drive/12hjlT6JG8IlEXYISKw5zFJE6qBDuuVi1?usp=sharing
than you for your help

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

紫轩蝶泪 2025-01-25 22:15:23

(感谢 @amina 的更新)

答案部分中添加解决方案,尽管它存在于评论部分中为了社区的利益

我使用了“ tf.keras.losses.MeanSquaredLogarithmicError() ”损失
功能。它使错误量更小(因为 Log )并且
您可以了解培训效果是否良好。

(Thanks @amina for the update)

Adding the solution here in the Answer Section though it is present in the comment section for the benefit of the community.

I used " tf.keras.losses.MeanSquaredLogarithmicError() " loss
function. It makes the amount of error smaller (because of Log )and
you can understand whether training is doing well or not.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文