为什么训练预贴模型需要更长的时间?
根据我在训练和测试诸如 Faster rcnn 之类的对象检测模型方面的有限经验,我注意到每当我将变量 pretrained 设置为 True 时,训练时间都会比我将 pretrained 设置为 False 进行训练时花费的时间要多。我特别看到这种效果的模型是具有 ResNet50 fpn 主干的 Faster RCNN,该主干具有来自 ImageNet 数据集的预训练权重。
我在谷歌上搜索了“为什么训练预训练模型需要更长的时间?”这句话。它显示的只是“如何使用预训练模型......等”的示例。而不是“为什么..”
From my limited experience in training and testing object detection models like faster rcnn I've noticed that whenever I set the variable pretrained to True the training time took way more than when I trained it with pretrained set to False. The model that I've particularly seen this effect on is Faster RCNN with ResNet50 fpn backbone that has pretrained weights from ImageNet dataset.
I've googled the sentence "Why does training a pretrained model take longer time?" and all it shows is examples of "How to use pretrained model...etc." and not "Why.." ????
So I felt curious to know if anyone here could explain or hint.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论