.rect_dendrogram(dend, k = k, Palette = rect_border, rect_fill = rect_fill, 中的错误:k 必须介于 2 和 97 之间

发布于 2025-01-18 19:13:36 字数 419 浏览 1 评论 0原文

我正在尝试在R中估算R中的簇树状图,以估算我制作的98个主题的结构主题模型。

我首先运行以下效果很好:

res.hc <- eclust(scale(out_corr$cor), "hclust", nboot = 500)

然后,我尝试使用以下语法来可视化树状图:

fviz_dend(res.hc, rect = TRUE)

在这里,我收到以下错误: .RECT_DENDROGRAM中的错误(dend,k = k,palette = rect_border,rect_fill = rect_fill,:: K必须在2到97之间

,因为我的模型中的主题数是98?如果是这样,是否有一种方法可以将树状图可视化而不将我的主题减少到97?

谢谢你!

I am trying to estimate a cluster dendrogram in R for a structural topic model I produced with 98 topics.

I first ran the following which worked well:

res.hc <- eclust(scale(out_corr$cor), "hclust", nboot = 500)

I then attempting to visualize the dendrogram using the following syntax:

fviz_dend(res.hc, rect = TRUE)

Here, I received the following error:
Error in .rect_dendrogram(dend, k = k, palette = rect_border, rect_fill = rect_fill, :
k must be between 2 and 97

Is this because the number of topics in my model is 98? If so, is there a way to still visualize the dendrogram without reducing my topics to 97?

Thank you!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

╭ゆ眷念 2025-01-25 19:13:36

以下步骤有助于解决问题:

  1. 估计集群树状图
res.hc <- eclust(scale(out_corr$cor), "hclust", nboot = 500)
  1. 安装dendextend
install.packages("dendextend")
library(dendextend)
  1. install denlerr dplyr
install.packages("dplyr")
library(dplyr)
  1. 保存群集估计为
dend<-as.dendrogram(res.hc)
  1. 群集级别的树状图颜色
par(mar=c(1,1,1,7))
dend %>%
  set("labels_col", value = c("skyblue", "red", "grey", "blue"), k=4) %>%
  set("branches_k_color", value = c("skyblue", "red", "grey", "blue"), k = 4) %>%
  plot(horiz=FALSE, axes=FALSE)
abline(v = 350, lty = 2)

The following steps helped to resolve the issue:

  1. estimate cluster dendrogram
res.hc <- eclust(scale(out_corr$cor), "hclust", nboot = 500)
  1. install dendextend
install.packages("dendextend")
library(dendextend)
  1. install dplyr
install.packages("dplyr")
library(dplyr)
  1. save cluster estimate as a dendrogram
dend<-as.dendrogram(res.hc)
  1. color in cluster levels
par(mar=c(1,1,1,7))
dend %>%
  set("labels_col", value = c("skyblue", "red", "grey", "blue"), k=4) %>%
  set("branches_k_color", value = c("skyblue", "red", "grey", "blue"), k = 4) %>%
  plot(horiz=FALSE, axes=FALSE)
abline(v = 350, lty = 2)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文