r编程错误中的py_call_impl(可呼叫,点$ args,dots $ keywords):value eRror:数据基数模棱两可:x尺寸:13704 y尺寸:5710
我正在尝试使用R编程学习深度学习。但是卡住了这个错误。 py_call_impl中的错误(可呼叫,点$ args,点$关键字): ValueError:数据基数模棱两可: X尺寸:13704 Y尺寸:5710 确保所有阵列都包含相同数量的样本。
代码:
# Libraries required
install_tensorflow(method = "auto")
library(keras)
library(tensorflow)
library(caret)
library(reticulate)
library(stringr)
data <- fnd2
head(data)
x <- data[,c(2:4)]
y <- data[,5]
head(x)
head(y)
train_data_percentage <- 0.75
train_number <- round(nrow(x)*train_data_percentage)
set.seed(1234)
index <- sample( c(1:nrow(data)), train_number, replace = F )
train_x <- as.matrix(x[index,])
train_y <- as.matrix(y[index])
test_x <- as.matrix(x[-index,])
test_y <- as.matrix(y[-index])
length(train_x); length(test_x); length(train_y); length(test_y)
table(train_y)
table(test_y)
# Padding sequences
train_x <- str_pad(train_x, width = 0, pad = " ")
test_x <- str_pad(test_x, width = 0, pad = " ")
# Model
model <- keras_model_sequential()
model %>%
layer_embedding(input_dim = 500, output_dim = 32) %>%
layer_simple_rnn(units = 32) %>%
layer_dense(units = 1, activation = "sigmoid")
# Compile
model %>% compile(optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("acc"))
# Fit model
history <- model %>% fit(train_x, train_y,
epochs = 25,
batch_size = 128,
validation_split = 0.2)
执行拟合模型部分后,此错误弹出。有人可以帮忙吗?谢谢..
I am trying to learn deep learning using R programming. But stuck with this error.
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Data cardinality is ambiguous:
x sizes: 13704
y sizes: 5710
Make sure all arrays contain the same number of samples.
Code:
# Libraries required
install_tensorflow(method = "auto")
library(keras)
library(tensorflow)
library(caret)
library(reticulate)
library(stringr)
data <- fnd2
head(data)
x <- data[,c(2:4)]
y <- data[,5]
head(x)
head(y)
train_data_percentage <- 0.75
train_number <- round(nrow(x)*train_data_percentage)
set.seed(1234)
index <- sample( c(1:nrow(data)), train_number, replace = F )
train_x <- as.matrix(x[index,])
train_y <- as.matrix(y[index])
test_x <- as.matrix(x[-index,])
test_y <- as.matrix(y[-index])
length(train_x); length(test_x); length(train_y); length(test_y)
table(train_y)
table(test_y)
# Padding sequences
train_x <- str_pad(train_x, width = 0, pad = " ")
test_x <- str_pad(test_x, width = 0, pad = " ")
# Model
model <- keras_model_sequential()
model %>%
layer_embedding(input_dim = 500, output_dim = 32) %>%
layer_simple_rnn(units = 32) %>%
layer_dense(units = 1, activation = "sigmoid")
# Compile
model %>% compile(optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("acc"))
# Fit model
history <- model %>% fit(train_x, train_y,
epochs = 25,
batch_size = 128,
validation_split = 0.2)
After executing fit model part, this error pops up. Can someone please help? Thanks..
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论