lme4 1.1-27.1 错误:pwrssUpdate 未在 (maxit) 迭代中收敛
抱歉,这个错误之前已经讨论过,stackoverflow 上的每个答案似乎都特定于
我尝试在 lme4 中运行以下负二项式模型的数据:
Model5.binomial<-glmer.nb(countvariable ~ waves + var1 + dummycodedvar2 + dummycodedvar3 + (1|record_id), data=datadfomit)
但是,在尝试运行模型时收到以下错误:
Error in f_refitNB(lastfit, theta = exp(t), control = control) :pwrssUpdate did not converge in (maxit) iterations
我首先运行模型只有 3 个预测变量(waves、var1、dummycodedvar2)并得到相同的错误。但将预测变量集中解决了这个问题,并且模型运行良好。
现在有 4 个变量(全部居中),我预计模型能够顺利运行,但再次收到错误。
由于该网站上的每个答案似乎都指向数据中的问题,因此可以在此处找到复制该问题的数据:
https://file.io/3vtX9RwMJ6LF
Sorry that this error has been discussed before, each answer on stackoverflow seems specific to the data
I'm attempting to run the following negative binomial model in lme4:
Model5.binomial<-glmer.nb(countvariable ~ waves + var1 + dummycodedvar2 + dummycodedvar3 + (1|record_id), data=datadfomit)
However, I receive the following error when attempting to run the model:
Error in f_refitNB(lastfit, theta = exp(t), control = control) :pwrssUpdate did not converge in (maxit) iterations
I first ran the model with only 3 predictor variables (waves, var1, dummycodedvar2) and got the same error. But centering the predictors fixed this problem and the model ran fine.
Now with 4 variables (all centered) I expected the model to run smoothly, but receive the error again.
Since every answer on this site seems to point towards a problem in the data, data that replicates the problem can be found here:
https://file.io/3vtX9RwMJ6LF
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您的响应变量有很多零:
我建议拟合一个考虑到这一点的模型,例如零膨胀模型。
GLMMadaptive
包可以拟合零膨胀负二项式混合效应模型:Your response variable has a lot of zeros:
I would suggest fitting a model that takes account of this, such as a zero-inflated model. The
GLMMadaptive
package can fit zero-inflated negative binomial mixed effects models: