我正在尝试使用 openmp 并行化老鼠迷宫问题,但它花费了太多时间,有人可以帮助我吗?
与原始代码相比,上面的并行代码花费更多的时间。我已经使用了BFS方法来解决问题。我得到了正确的输出,但它需要太多时间。
(x,y)表示矩阵单元格坐标,并且 dist
表示其与源
struct Node
{
int x, y, dist;
};
\\Below arrays detail all four possible movements from a cell
int row[] = { -1, 0, 0, 1 };
int col[] = { 0, -1, 1, 0 };
功能的最小距离,以检查是否可以转到位置(行,col) 从当前位置。该函数返回false如果(行,col) 不是有效的位置,也不是值0或已经访问过的。
bool isValid(vector<vector<int>> const &mat, vector<vector<bool>> &visited, int row, int col)
{
return (row >= 0 && row < mat.size()) && (col >= 0 && col < mat[0].size())
&& mat[row][col] && !visited[row][col];
}
从源中找到矩阵中的最短路由 电池(i,j)到目标单元格(x,y)
int findShortestPathLength(vector<vector<int>> const &mat, pair<int, int> &src,
pair<int, int> &dest)
{
if (mat.size() == 0 || mat[src.first][src.second] == 0 ||
mat[dest.first][dest.second] == 0) {
return -1;
}
// `M × N` matrix
int M = mat.size();
int N = mat[0].size();
// construct a `M × N` matrix to keep track of visited cells
vector<vector<bool>> visited;
visited.resize(M, vector<bool>(N));
// create an empty queue
queue<Node> q;
// get source cell (i, j)
int i = src.first;
int j = src.second;
// mark the source cell as visited and enqueue the source node
visited[i][j] = true;
q.push({i, j, 0});
// stores length of the longest path from source to destination
int min_dist = INT_MAX;
// loop till queue is empty
while (!q.empty())
{
// dequeue front node and process it
Node node = q.front();
q.pop();
// (i, j) represents a current cell, and `dist` stores its
// minimum distance from the source
int i = node.x, j = node.y, dist = node.dist;
// if the destination is found, update `min_dist` and stop
if (i == dest.first && j == dest.second)
{
min_dist = dist;
break;
}
// check for all four possible movements from the current cell
// and enqueue each valid movement
#pragma omp parallel for
for (int k = 0; k < 4; k++)
{
// check if it is possible to go to position
// (i + row[k], j + col[k]) from current position
#pragma omp task shared(i,visited,j)
{
if (isValid(mat, visited, i + row[k], j + col[k]))
{
// mark next cell as visited and enqueue it
visited[i + row[k]][j + col[k]] = true;
q.push({ i + row[k], j + col[k], dist + 1 });
}
}
}
}
if (min_dist != INT_MAX) {
return min_dist;
}
return -1;
}
代码的主要部分仅包含一个矩阵,源和目标坐标,
int main()
{
vector<vector<int>> mat =
{
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 0, 1, 0, 1 },
{ 0, 0, 1, 0, 1, 1, 1, 0, 0, 1 },
{ 1, 0, 1, 1, 1, 0, 1, 1, 0, 1 },
{ 0, 0, 0, 1, 0, 0, 0, 1, 0, 1 },
{ 1, 0, 1, 1, 1, 0, 0, 1, 1, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 1, 0, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1 },
{ 0, 0, 1, 0, 0, 1, 1, 0, 0, 1 },
};
pair<int, int> src = make_pair(0, 0);
pair<int, int> dest = make_pair(7, 5);
int min_dist = findShortestPathLength(mat, src, dest);
if (min_dist != -1)
{
cout << min_dist<<endl;
}
else {
cout << "Destination cannot be reached from a given source"<<endl;
}
return 0;
}
我使用了共享变量,但花费了太多时间。 有人可以帮我吗?
The above parallelize code is taking much more time as compare to the original one. I have used bfs approach to solve the problem. I am getting the correct output but it is taking too much time.
(x, y) represents matrix cell coordinates, anddist
represents their minimum distance from the source
struct Node
{
int x, y, dist;
};
\\Below arrays detail all four possible movements from a cell
int row[] = { -1, 0, 0, 1 };
int col[] = { 0, -1, 1, 0 };
Function to check if it is possible to go to position (row, col)
from the current position. The function returns false if (row, col)
is not a valid position or has a value 0 or already visited.
bool isValid(vector<vector<int>> const &mat, vector<vector<bool>> &visited, int row, int col)
{
return (row >= 0 && row < mat.size()) && (col >= 0 && col < mat[0].size())
&& mat[row][col] && !visited[row][col];
}
Find the shortest possible route in a matrix mat
from source
cell (i, j) to destination cell (x, y)
int findShortestPathLength(vector<vector<int>> const &mat, pair<int, int> &src,
pair<int, int> &dest)
{
if (mat.size() == 0 || mat[src.first][src.second] == 0 ||
mat[dest.first][dest.second] == 0) {
return -1;
}
// `M × N` matrix
int M = mat.size();
int N = mat[0].size();
// construct a `M × N` matrix to keep track of visited cells
vector<vector<bool>> visited;
visited.resize(M, vector<bool>(N));
// create an empty queue
queue<Node> q;
// get source cell (i, j)
int i = src.first;
int j = src.second;
// mark the source cell as visited and enqueue the source node
visited[i][j] = true;
q.push({i, j, 0});
// stores length of the longest path from source to destination
int min_dist = INT_MAX;
// loop till queue is empty
while (!q.empty())
{
// dequeue front node and process it
Node node = q.front();
q.pop();
// (i, j) represents a current cell, and `dist` stores its
// minimum distance from the source
int i = node.x, j = node.y, dist = node.dist;
// if the destination is found, update `min_dist` and stop
if (i == dest.first && j == dest.second)
{
min_dist = dist;
break;
}
// check for all four possible movements from the current cell
// and enqueue each valid movement
#pragma omp parallel for
for (int k = 0; k < 4; k++)
{
// check if it is possible to go to position
// (i + row[k], j + col[k]) from current position
#pragma omp task shared(i,visited,j)
{
if (isValid(mat, visited, i + row[k], j + col[k]))
{
// mark next cell as visited and enqueue it
visited[i + row[k]][j + col[k]] = true;
q.push({ i + row[k], j + col[k], dist + 1 });
}
}
}
}
if (min_dist != INT_MAX) {
return min_dist;
}
return -1;
}
main part of the code only contains a matrix and source and destination coordinates
int main()
{
vector<vector<int>> mat =
{
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 0, 1, 0, 1 },
{ 0, 0, 1, 0, 1, 1, 1, 0, 0, 1 },
{ 1, 0, 1, 1, 1, 0, 1, 1, 0, 1 },
{ 0, 0, 0, 1, 0, 0, 0, 1, 0, 1 },
{ 1, 0, 1, 1, 1, 0, 0, 1, 1, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 1, 0, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1, 0, 0 },
{ 1, 1, 1, 1, 1, 0, 0, 1, 1, 1 },
{ 0, 0, 1, 0, 0, 1, 1, 0, 0, 1 },
};
pair<int, int> src = make_pair(0, 0);
pair<int, int> dest = make_pair(7, 5);
int min_dist = findShortestPathLength(mat, src, dest);
if (min_dist != -1)
{
cout << min_dist<<endl;
}
else {
cout << "Destination cannot be reached from a given source"<<endl;
}
return 0;
}
I have used shared variable but it is taking too much time.
Can anyone help me?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
正如人们所说,你只能在 4 个方向上获得并行性;更好的方法是保留一组点:首先是起点,然后是从那里一步可以到达的所有点,然后是两步可以到达的点。
通过这种方法,您可以获得更多的并行性:您正在构建所谓的“波前”,并且可以同时处理所有点。
(我是为一般的 DAG 编写的;将迷宫写为 DAG 对读者来说是一种练习。)
但是,这种方法仍然存在很大的问题:如果当前波前的两个点决定添加相同的新点,那么您必须解决这个问题。
对于非常并行的方法,您需要放弃完全添加新点的“推”模型,并采用“拉”模型:在每次“距离”迭代中,您循环遍历所有点并询问,如果我无法到达,是我的一位邻居可以联系到吗?如果是这样,请将我标记为比该邻居多一步可到达。
如果您考虑一下最后一种方法,您会发现您实际上是在使用邻接矩阵和当前可达集进行一系列矩阵向量乘积。只不过您将标量“+”运算替换为“min”,将标量“*”替换为“+1”。阅读有关将图运算解释为线性代数的任何教程。只是它并不是真正的线性。
As people have remarked, you only get parallelism over the 4 directions; a better approach is to keep a set of sets of points: first the starting point, then all points you can reach from there in 1 step, then the ones you can reach in two steps.
With this approach you get more parallelism: you're building what's known as a "wave front" and all the points can be tackled simultaneously.
(I have written this for a general DAG; writing your maze as a DAG is an exercise for the reader.)
However, this approach still has big problems: if two points on the current wave front decide to add the same new point, you have to resolve that.
For a very parallel approach you need to abandon the "push" model of adding new points altogether, and to go a "pull" model: in every "distance" iteration you loop over all points and ask, if I am not reachable, was one of my neighbors reachable? If so, mark me as reachable in one step more than that neighbor.
If you think about that last approach for a second (or two) you'll see that you are essentially doing a sequence of matrix-vector products, with the adjacency matrix and the currently reachable set. Except that you replace the scalar "+" operation by "min" and the scalar "*" by "+1". Read any tutorial about the interpretation of graph operations as linear algebra. Except that it's not really linear.