KERAS应用程序(转移学习)
我是一名学生,目前正在自学深度学习。在这里我想请大家澄清一下关于迁移学习的问题。
例如 MobileNetv2 (https://keras.io/api/applications/mobilenet/# mobilenetv2-function),如果权重参数设置为 None,那么我不进行迁移学习,因为权重是随机初始化的。如果我想做迁移学习,那么我应该将权重参数设置为imagenet。这个概念正确吗?
关于深度学习的澄清和解释
I am a student and currently studying deep learning by myself. Here I would like to ask for clarification regarding the transfer learning.
For example MobileNetv2 (https://keras.io/api/applications/mobilenet/#mobilenetv2-function), if the weights parameter is set to None, then I am not doing transfer learning as the weights are random initialized. If I would like to do transfer learning, then I should set the weights parameter to imagenet. Is this concept correct?
Clarification and explanation regarding deep learning
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
是的,当您以随机值初始化权重时,您只是在使用架构并从头开始训练模型。转移学习的目的是利用另一种训练有素的模型来获得更好的结果或使用较少的计算资源。
使用转移学习的方法有不同的方法:
还有更多案例,但我希望它可以给您一个主意。
Yes, when you initialize the weights with random values, you are just using the architecture and training the model from scratch. The goal of transfer learning is to use the previously gained knowledge by another trained model to get better results or to use less computational resources.
There are different ways to use transfer learning:
There are more cases, but I hope it could give you an idea.