用于同时预测多个序列的 LSTM
我目前正在研究一个有关一个数据集的项目,该项目包含4个月内回旋处200用户的智能手机使用数据。对于每个用户,我都有一个包含应用程序事件的数据框架(应用程序的名称,时间,位置等)。我的目标是预测用户将要打开的下一个应用程序的停留时间。我不想为每个用户构建一个模型,但是,我试图为所有组合用户构建一个模型。现在,我正在努力寻找适合该项目的架构。
记录的时间间隔不变,每个数据框架的长度都不同。我想同时同时向多个用户学习时,我想利用时间依赖性,因此我的输入将是具有附加功能的App用法持续时间的多个并行序列,并且我的输出再次是多个并行序列,其中包含下一个应用程序的停留时间,但是AS AS AS AS AS AS AS序列的时间间隔不均匀,也不是相同的长度似乎不合适的。我只是想了解如何正确构建数据以及您认为是一种合适的方法的一些想法。我真的很感谢一些想法或阅读建议。
I'm currently working on a project regarding a dataset that contains smartphone usage data from roundabout 200 users over a period of 4 months. For each user, I have a dataframe consisting of app-log events (Name of the App, Time, Location etc.). My goal is to predict the dwell time for the next app a user is going to open. I don't want to build one model for each user, but instead, I'm trying to build a model for all combined users. Now I'm struggling with finding an architecture that is suitable for this project.
The records are not evenly spaced in time, and the length of each dataframe differs. I want to utilize the temporal dependencies while simultaneously learn from multiple users at once, thus my input would be multiple parallel sequences of app usage durations with additional features and my output again multiple parallel sequences containing the dwell-time for the next app, but as the sequences are not evenly spaced in time nor have the same length it seems not suitable. I just wanted to get some ideas on how to structure the data properly and what you think would be a suitable approach. I would really appreciate some ideas or reading recommendations.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论