将空格分隔的txt数组读入numpy
我有一个充满 .txt 文件的文件夹,其格式如下(一个示例,下面是 0.txt):
[[[ 2.1032608e+01 3.2608695e+00 1.4498953e-02]
[ 2.1032608e+01 3.0978260e+00 6.5927312e-04]
[ 3.0652174e+01 5.6739132e+01 1.1040760e-04]
[ 3.0489130e+01 5.6576088e+01 6.9526240e-04]
[ 1.6141304e+01 2.1684782e+01 1.5140385e-03]
[ 1.6141304e+01 2.1684782e+01 2.4998910e-03]
[ 3.5706520e+01 1.5163043e+01 1.5667630e-02]
[ 3.5706520e+01 1.5163043e+01 5.1132514e-04]
[ 1.6141304e+01 2.1521740e+01 9.0042617e-05]
[ 1.5652174e+01 2.0217392e+01 4.7678968e-05]
[ 3.3097828e+01 5.8043480e+01 2.3867608e-04]
[ 1.5652174e+01 2.0217392e+01 1.3099676e-04]
[ 1.7445652e+01 3.3097828e+01 8.3532266e-04]
[ 1.8423914e+01 2.5597826e+01 1.5159410e-02]
[ 3.8967392e+01 5.9673912e+01 6.5958439e-03]
[ 3.8967392e+01 5.9673912e+01 9.2201140e-03]
[ 1.5652174e+01 2.0054348e+01 9.5022479e-03]
[ 3.3097828e+01 3.9782608e+01 1.6697637e-04]
[ 3.3260868e+01 3.9619564e+01 2.7213297e-03]
[ 3.3260868e+01 3.9619564e+01 2.1958089e-04]
[ 1.6141304e+01 2.1684782e+01 5.6157220e-05]
[ 2.1032608e+01 3.0978260e+00 -1.0377635e-05]
[ 2.1032608e+01 3.0978260e+00 -8.7080858e-05]
[ 1.5652174e+01 2.0217392e+01 -1.1274265e-04]
[ 1.5652174e+01 2.0054348e+01 -5.1815634e-05]
[ 3.2119564e+01 5.9673912e+01 -1.6645924e-04]
[ 1.5652174e+01 2.0217392e+01 7.7641735e-06]
[ 3.2608697e-01 1.7934783e+00 3.5882247e-05]
[ 2.1032608e+01 3.0978260e+00 7.8685611e-05]
[ 1.5652174e+01 2.0054348e+01 3.1178934e-05]
[ 3.8967392e+01 5.9673912e+01 1.0482615e-04]
[ 3.1956522e+01 5.6739132e+01 1.0767143e-03]
[ 3.1793478e+01 5.6739132e+01 6.9617934e-04]
[ 3.1956522e+01 5.6739132e+01 1.2175621e-04]
[ 3.2119564e+01 5.9673912e+01 8.6526132e-05]
[ 3.8967392e+01 5.9673912e+01 7.2365336e-05]
[ 3.5706520e+01 1.5163043e+01 1.3151739e-04]
[ 2.1032608e+01 3.0978260e+00 4.4964137e-05]
[ 2.1032608e+01 3.0978260e+00 -1.4677797e-05]
[ 3.5706520e+01 1.5163043e+01 -1.1417971e-05]
[ 2.1032608e+01 3.0978260e+00 1.2694198e-05]
[ 2.1032608e+01 3.0978260e+00 8.1792423e-05]
[ 3.2119564e+01 5.9673912e+01 -4.8189460e-05]
[ 1.5652174e+01 2.0217392e+01 -1.2792133e-04]
[ 3.2445652e+01 5.9673912e+01 -1.1050291e-04]
[ 1.5652174e+01 2.0217392e+01 -4.2534582e-05]
[ 3.2282608e+01 5.9673912e+01 -3.9592214e-05]
[ 3.2445652e+01 5.9673912e+01 -1.2300081e-04]
[ 3.2119564e+01 5.9673912e+01 1.3895029e-04]
[ 3.2119564e+01 5.9673912e+01 4.5048160e-04]
[ 3.2119564e+01 5.9673912e+01 2.8149947e-03]
[ 3.2119564e+01 5.9673912e+01 2.4660570e-03]
[ 3.2119564e+01 5.9673912e+01 1.1084687e-05]
[ 1.8423914e+01 2.5597826e+01 2.7254851e-05]
[ 1.8423914e+01 2.5597826e+01 4.5520133e-06]
[ 3.5706520e+01 1.5163043e+01 1.3295857e-05]
[ 3.2282608e+01 5.9673912e+01 4.1052594e-06]
[ 3.2119564e+01 5.9673912e+01 5.6243367e-05]
[ 3.3097828e+01 5.8206520e+01 2.3062130e-05]
[ 3.2119564e+01 5.9673912e+01 6.7559289e-05]
[ 3.2119564e+01 5.9673912e+01 6.5806766e-05]
[ 3.2119564e+01 5.9673912e+01 9.2756242e-04]
[ 3.2119564e+01 5.9673912e+01 5.2335125e-04]
[ 3.2282608e+01 5.9673912e+01 3.2513806e-05]
[ 1.8423914e+01 2.5597826e+01 1.3968185e-05]
[ 3.2119564e+01 5.9673912e+01 1.5303758e-05]
[ 1.6141304e+01 2.1684782e+01 1.7933089e-05]
[ 3.2119564e+01 5.9673912e+01 6.1444991e-04]
[ 2.1032608e+01 3.0978260e+00 2.0746856e-04]
[ 1.5652174e+01 2.0054348e+01 -9.7850330e-05]]]
有没有办法将其读入 2d numpy 数组?请注意,它是由两个空格分隔的空格,但当有负数时, - 符号代替其中一个空格。任何帮助将不胜感激!
我尝试将其读入 pandas 并以各种方式进行解析(使用 df.str 去掉括号等),但我似乎无法让它以科学记数法读取的方式工作。我在这里尝试了正则表达式方法。
I have a folder full of .txt files with the following format (one example, 0.txt below):
[[[ 2.1032608e+01 3.2608695e+00 1.4498953e-02]
[ 2.1032608e+01 3.0978260e+00 6.5927312e-04]
[ 3.0652174e+01 5.6739132e+01 1.1040760e-04]
[ 3.0489130e+01 5.6576088e+01 6.9526240e-04]
[ 1.6141304e+01 2.1684782e+01 1.5140385e-03]
[ 1.6141304e+01 2.1684782e+01 2.4998910e-03]
[ 3.5706520e+01 1.5163043e+01 1.5667630e-02]
[ 3.5706520e+01 1.5163043e+01 5.1132514e-04]
[ 1.6141304e+01 2.1521740e+01 9.0042617e-05]
[ 1.5652174e+01 2.0217392e+01 4.7678968e-05]
[ 3.3097828e+01 5.8043480e+01 2.3867608e-04]
[ 1.5652174e+01 2.0217392e+01 1.3099676e-04]
[ 1.7445652e+01 3.3097828e+01 8.3532266e-04]
[ 1.8423914e+01 2.5597826e+01 1.5159410e-02]
[ 3.8967392e+01 5.9673912e+01 6.5958439e-03]
[ 3.8967392e+01 5.9673912e+01 9.2201140e-03]
[ 1.5652174e+01 2.0054348e+01 9.5022479e-03]
[ 3.3097828e+01 3.9782608e+01 1.6697637e-04]
[ 3.3260868e+01 3.9619564e+01 2.7213297e-03]
[ 3.3260868e+01 3.9619564e+01 2.1958089e-04]
[ 1.6141304e+01 2.1684782e+01 5.6157220e-05]
[ 2.1032608e+01 3.0978260e+00 -1.0377635e-05]
[ 2.1032608e+01 3.0978260e+00 -8.7080858e-05]
[ 1.5652174e+01 2.0217392e+01 -1.1274265e-04]
[ 1.5652174e+01 2.0054348e+01 -5.1815634e-05]
[ 3.2119564e+01 5.9673912e+01 -1.6645924e-04]
[ 1.5652174e+01 2.0217392e+01 7.7641735e-06]
[ 3.2608697e-01 1.7934783e+00 3.5882247e-05]
[ 2.1032608e+01 3.0978260e+00 7.8685611e-05]
[ 1.5652174e+01 2.0054348e+01 3.1178934e-05]
[ 3.8967392e+01 5.9673912e+01 1.0482615e-04]
[ 3.1956522e+01 5.6739132e+01 1.0767143e-03]
[ 3.1793478e+01 5.6739132e+01 6.9617934e-04]
[ 3.1956522e+01 5.6739132e+01 1.2175621e-04]
[ 3.2119564e+01 5.9673912e+01 8.6526132e-05]
[ 3.8967392e+01 5.9673912e+01 7.2365336e-05]
[ 3.5706520e+01 1.5163043e+01 1.3151739e-04]
[ 2.1032608e+01 3.0978260e+00 4.4964137e-05]
[ 2.1032608e+01 3.0978260e+00 -1.4677797e-05]
[ 3.5706520e+01 1.5163043e+01 -1.1417971e-05]
[ 2.1032608e+01 3.0978260e+00 1.2694198e-05]
[ 2.1032608e+01 3.0978260e+00 8.1792423e-05]
[ 3.2119564e+01 5.9673912e+01 -4.8189460e-05]
[ 1.5652174e+01 2.0217392e+01 -1.2792133e-04]
[ 3.2445652e+01 5.9673912e+01 -1.1050291e-04]
[ 1.5652174e+01 2.0217392e+01 -4.2534582e-05]
[ 3.2282608e+01 5.9673912e+01 -3.9592214e-05]
[ 3.2445652e+01 5.9673912e+01 -1.2300081e-04]
[ 3.2119564e+01 5.9673912e+01 1.3895029e-04]
[ 3.2119564e+01 5.9673912e+01 4.5048160e-04]
[ 3.2119564e+01 5.9673912e+01 2.8149947e-03]
[ 3.2119564e+01 5.9673912e+01 2.4660570e-03]
[ 3.2119564e+01 5.9673912e+01 1.1084687e-05]
[ 1.8423914e+01 2.5597826e+01 2.7254851e-05]
[ 1.8423914e+01 2.5597826e+01 4.5520133e-06]
[ 3.5706520e+01 1.5163043e+01 1.3295857e-05]
[ 3.2282608e+01 5.9673912e+01 4.1052594e-06]
[ 3.2119564e+01 5.9673912e+01 5.6243367e-05]
[ 3.3097828e+01 5.8206520e+01 2.3062130e-05]
[ 3.2119564e+01 5.9673912e+01 6.7559289e-05]
[ 3.2119564e+01 5.9673912e+01 6.5806766e-05]
[ 3.2119564e+01 5.9673912e+01 9.2756242e-04]
[ 3.2119564e+01 5.9673912e+01 5.2335125e-04]
[ 3.2282608e+01 5.9673912e+01 3.2513806e-05]
[ 1.8423914e+01 2.5597826e+01 1.3968185e-05]
[ 3.2119564e+01 5.9673912e+01 1.5303758e-05]
[ 1.6141304e+01 2.1684782e+01 1.7933089e-05]
[ 3.2119564e+01 5.9673912e+01 6.1444991e-04]
[ 2.1032608e+01 3.0978260e+00 2.0746856e-04]
[ 1.5652174e+01 2.0054348e+01 -9.7850330e-05]]]
Is there any way to read this into a 2d numpy array? Notice that it is space delimited by two spaces, but when there is a negative number, the - sign is in place of one of the spaces. Any help would be greatly appreciated!
I tried reading it into pandas and parsing in various ways (using df.str to strip out brackets etc), but I couldn't seem to get it working in a way which reads in the scientific notation. I tried a regex approach here.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
用途:
输出:
Use:
Output:
嗯,据我了解,你想要一个二维数组,
所以阶段是:(
伪-python)
Well , as I understood it, you want a 2d array
so the stages are:
(pseudo - python)