加速 scipy.nquad 计算多重积分

发布于 2025-01-18 01:59:14 字数 2800 浏览 3 评论 0原文

我试图计算这个函数:

Function

这是多重积分的结果。

函数 F_A_、F_B_、F_C_、F_D_ 和 F_FPS_ 是截断的正态函数,包含在设置的间隔之间。我用 scipy.nquad 尝试过,但最终无法完成,因为它太慢了。

我的最后一步如下,其中我尝试将 Fs 视为正常函数(未截断)并调整积分的限制以获得我想要的。

%%time

muA, sigmaA = 303, 1
muB, sigmaB = 517, 2
muC, sigmaC = 1524, 1
muD, sigmaD = 1784, 2
muF, sigmaF = 30, 1

mu1 = muA
sigma1 = sigmaA
mu2 = muB
sigma2 = sigmaB
mu3 = muC
sigma3 = sigmaC
mu4 = muD
sigma4 = sigmaD
mu5 = muF
sigma5 = sigmaF

#overhead
factor = (sigma3*np.sqrt(2*np.pi))**(-1)*\
         (sigma1*np.sqrt(2*np.pi))**(-1)*\
         (sigma5*np.sqrt(2*np.pi))**(-1)*\
         (sigma1*np.sqrt(2*np.pi))**(-1)*\
         (sigma2*np.sqrt(2*np.pi))**(-1)*\
         (sigma2*np.sqrt(2*np.pi))**(-1)*\
         (sigma4*np.sqrt(2*np.pi))**(-1)*\
         (sigma4*np.sqrt(2*np.pi))**(-1)*\
         (sigma3*np.sqrt(2*np.pi))**(-1)

def pdfV(w, p, m, k, h, q, g, y, n, \
         mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return \
           np.exp(-0.5*((w-mu3)/sigma3)**2-0.5*((p-mu1)/sigma1)**2-0.5*((m-mu5)/sigma5)**2-0.5*((k-mu1)/sigma1)**2-0.5*((h-mu2)/sigma2)**2-0.5*((q+p-mu2)/sigma2)**2-0.5*((g+h-mu4)/sigma4)**2-0.5*((y/q+w-mu4)/sigma4)**2-0.5*((n/g+k-mu3)/sigma3)**2)

def lim1(p, m, k, h, q, g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu3 - sigma3, mu3 + sigma3]

def lim2(m, k, h, q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu1 - sigma1, mu1 + sigma1]

def lim3(k, h, q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu5 - sigma5, mu5 + sigma5]

def lim4(h, q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu1 - sigma1, mu1 + sigma1]

def lim5(q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu2 - sigma2, mu2 + sigma2]

def lim6(g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu2-mu1 - sigma2, mu2-mu1 + sigma2]

def lim7(y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu4-mu2 - sigma2, mu4-mu2 + sigma2]

def lim8(n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [(mu2-mu1)*(mu4-mu3) - sigma2, (mu2-mu1)*(mu4-mu3) + sigma2]

def lim9(mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [(mu4-mu2)*(mu3-mu1) - sigma2, (mu4-mu2)*(mu3-mu1) + sigma2]

options={'epsabs':0.01,'epsrel':0.01}

result = integrate.nquad(pdfV, [lim1, lim2, lim3, lim4, lim5, lim6, lim7, lim8, lim9], args=(muA, sigmaA, muB, sigmaB, muC, sigmaC, muD, sigmaD, muF, sigmaF), opts=options)

factor*result[0], result[1]

但我无法得到结果,因为算法没有到达终点,rs。

I trying to calculate this function:

Function

Which is the result of multiples integrals.

Functions F_A_, F_B_, F_C_, F_D_ and F_FPS_ is a truncated normal function, contained between intervals seted. I tried it with scipy.nquad, but I can't get in the end because it's too slow.

My last step is this below, in which I tried to consider Fs as a normal functions (not truncated) and adjust the limits of integration to get what I want.

%%time

muA, sigmaA = 303, 1
muB, sigmaB = 517, 2
muC, sigmaC = 1524, 1
muD, sigmaD = 1784, 2
muF, sigmaF = 30, 1

mu1 = muA
sigma1 = sigmaA
mu2 = muB
sigma2 = sigmaB
mu3 = muC
sigma3 = sigmaC
mu4 = muD
sigma4 = sigmaD
mu5 = muF
sigma5 = sigmaF

#overhead
factor = (sigma3*np.sqrt(2*np.pi))**(-1)*\
         (sigma1*np.sqrt(2*np.pi))**(-1)*\
         (sigma5*np.sqrt(2*np.pi))**(-1)*\
         (sigma1*np.sqrt(2*np.pi))**(-1)*\
         (sigma2*np.sqrt(2*np.pi))**(-1)*\
         (sigma2*np.sqrt(2*np.pi))**(-1)*\
         (sigma4*np.sqrt(2*np.pi))**(-1)*\
         (sigma4*np.sqrt(2*np.pi))**(-1)*\
         (sigma3*np.sqrt(2*np.pi))**(-1)

def pdfV(w, p, m, k, h, q, g, y, n, \
         mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return \
           np.exp(-0.5*((w-mu3)/sigma3)**2-0.5*((p-mu1)/sigma1)**2-0.5*((m-mu5)/sigma5)**2-0.5*((k-mu1)/sigma1)**2-0.5*((h-mu2)/sigma2)**2-0.5*((q+p-mu2)/sigma2)**2-0.5*((g+h-mu4)/sigma4)**2-0.5*((y/q+w-mu4)/sigma4)**2-0.5*((n/g+k-mu3)/sigma3)**2)

def lim1(p, m, k, h, q, g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu3 - sigma3, mu3 + sigma3]

def lim2(m, k, h, q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu1 - sigma1, mu1 + sigma1]

def lim3(k, h, q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu5 - sigma5, mu5 + sigma5]

def lim4(h, q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu1 - sigma1, mu1 + sigma1]

def lim5(q,  g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu2 - sigma2, mu2 + sigma2]

def lim6(g, y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu2-mu1 - sigma2, mu2-mu1 + sigma2]

def lim7(y, n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [mu4-mu2 - sigma2, mu4-mu2 + sigma2]

def lim8(n, mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [(mu2-mu1)*(mu4-mu3) - sigma2, (mu2-mu1)*(mu4-mu3) + sigma2]

def lim9(mu1, sigma1, mu2, sigma2, mu3, sigma3, mu4, sigma4, mu5, sigma5):
    return [(mu4-mu2)*(mu3-mu1) - sigma2, (mu4-mu2)*(mu3-mu1) + sigma2]

options={'epsabs':0.01,'epsrel':0.01}

result = integrate.nquad(pdfV, [lim1, lim2, lim3, lim4, lim5, lim6, lim7, lim8, lim9], args=(muA, sigmaA, muB, sigmaB, muC, sigmaC, muD, sigmaD, muF, sigmaF), opts=options)

factor*result[0], result[1]

But I can't get the result because the algorithm didn't reach the end, rs.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文