为什么x_train,y_train和x_test和y_test的价值在我将windowed_dataset放入python之后变为100(深度学习的预测)
我对我的代码有问题,我不知道为什么xtrain ytrain xtest ytest ytest ytest ytest 100(time_step)的值 因为我保持这样的价值((((1237,100),(1237,),(310,100),(310,)))
train_data, test_data = price_series_scaled[0:1237], price_series_scaled[1237:]
len(train_data) 1237
len(test_data) 310
train_data.shape, test_data.shape
((1237, 1), (310, 1))
def windowed_dataset(series, time_step):
dataX, dataY = [], []
for i in range(len(series)- time_step-1):
a = series[i : (i+time_step), 0]
dataX.append(a)
dataY.append(series[i+ time_step, 0])
return np.array(dataX), np.array(dataY)
X_train, y_train = windowed_dataset(train_data, time_step=100)
X_test, y_test = windowed_dataset(test_data, time_step=100)
X_train.shape, y_train.shape, X_test.shape, y_test.shape
((1136, 100), (1136,), (209, 100), (209,))
i have a problem about my code , i don't know why the value of xtrain ytrain xtest ytest diminue 100 (time_step) - 1
because i have keep the same value like this (((1237, 100), (1237,), (310, 100), (310,)))
train_data, test_data = price_series_scaled[0:1237], price_series_scaled[1237:]
len(train_data) 1237
len(test_data) 310
train_data.shape, test_data.shape
((1237, 1), (310, 1))
def windowed_dataset(series, time_step):
dataX, dataY = [], []
for i in range(len(series)- time_step-1):
a = series[i : (i+time_step), 0]
dataX.append(a)
dataY.append(series[i+ time_step, 0])
return np.array(dataX), np.array(dataY)
X_train, y_train = windowed_dataset(train_data, time_step=100)
X_test, y_test = windowed_dataset(test_data, time_step=100)
X_train.shape, y_train.shape, X_test.shape, y_test.shape
((1136, 100), (1136,), (209, 100), (209,))
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
它是窗口长度和内部值对齐,我的理解是您尝试从窗口长度为 100 的音频或目标中提取特征。
[ Sample ] :
[ Output ] :
It is windows length and inside value alignments, my understanding you try to extract the features from audio or target with windows length 100.
[ Sample ] :
[ Output ] :