多维立方体设计(在分析阶段)的先决条件和实践是什么?
我被分配在 SSAS 中设计多维立方体。 由于我对 SSAS 非常陌生,目前正处于分析阶段。 只是想看看,在立方体设计之前我应该遵循什么标准流程或指南,或者我应该准备任何一般性问题吗?
客户特别提到的关于数据量的一件事是
一个服务区有300万行,3年的数据
,这是否意味着我们应该规划分区策略?如果是,那么我应该看什么?我脑海中浮现出一件事:
- 我们应该考虑在哪个领域来分割立方体(我的方向正确吗?)
在分析过程中我应该考虑哪些其他因素?
I'm assigned to design multidimensional cube in SSAS.
As I am very new to SSAS, and currently this is in analysis phase.
Just wanted to see , is there any standard process or guideline should I follow or any general questions should I prepare prior to cube designing?
One thing client specifically mentioned about the volume of data as
One service area has 3 million rows, 3 years of data
Does it mean, we should plan for partition strategy ? if yes then what are the things should I be looking ? one thing comes in my mind
- what field should we consider to split the cube (am I heading in right direction ?)
What are the other factor should I consider during analysis ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
SSAS设计是一个很大的话题,有不同的角度。如果我处于你的立场,我会在谷歌上搜索“SSAS Design”或类似的内容来了解更多信息。例如,以下是 Microsoft 自己提供的一本书中的示范章节:https:/ /www.microsoftpressstore.com/articles/article.aspx?p=2812063
我会在此阶段跳过分区。首先看看它的性能如何,然后在确实需要时进行调整。通常分区是在一些累积字段(例如日期)上完成的,其中旧数据不会每天处理,而仅更新(处理)最新数据(分区)。这当然取决于您正在处理的数据。
SSAS design is a large topic with different angels. If i were in your shoes, I'd google for "SSAS Design" or something along those lines to learn more. For example, here's a model chapter from a book provided by Microsoft themselves: https://www.microsoftpressstore.com/articles/article.aspx?p=2812063
I'd skip for partitioning at this stage. See how it performs first and tune it later if really necessary. Usually partitioning is done on some accumulating field , like a date, where old data is not processed daily and only the latest data (partition) is updated (processed). This of course depends on the data you're dealing with.