ValueError:无法将输入数组从形状 (320,320,3) 广播到形状 (640,640,3)

发布于 2025-01-17 12:51:36 字数 3221 浏览 6 评论 0原文

我一直在尝试在Raspberry Pi上运行检测模型,但是当我尝试时,我会得到以下错误:

无法从形状(320,320,3)中广播输入数组形状(640,640,3)>

当我运行该

import re
import cv2
from tflite_runtime.interpreter import Interpreter
import numpy as np

CAMERA_WIDTH = 640
CAMERA_HEIGHT = 480

def load_labels(path='labels.txt'):
  """Loads the labels file. Supports files with or without index numbers."""
  with open(path, 'r', encoding='utf-8') as f:
    lines = f.readlines()
    labels = {}
    for row_number, content in enumerate(lines):
      pair = re.split(r'[:\s]+', content.strip(), maxsplit=1)
      if len(pair) == 2 and pair[0].strip().isdigit():
        labels[int(pair[0])] = pair[1].strip()
      else:
        labels[row_number] = pair[0].strip()
  return labels

def set_input_tensor(interpreter, image):
  """Sets the input tensor."""
  tensor_index = interpreter.get_input_details()[0]['index']
  input_tensor = interpreter.tensor(tensor_index)()[0]
  input_tensor[:, :] = np.expand_dims((image-255)/255, axis=0)


def get_output_tensor(interpreter, index):
  """Returns the output tensor at the given index."""
  output_details = interpreter.get_output_details()[index]
  tensor = np.squeeze(interpreter.get_tensor(output_details['index']))
  return tensor


def detect_objects(interpreter, image, threshold):
  """Returns a list of detection results, each a dictionary of object info."""
  set_input_tensor(interpreter, image)
  interpreter.invoke()
  # Get all output details
  boxes = get_output_tensor(interpreter, 0)
  classes = get_output_tensor(interpreter, 1)
  scores = get_output_tensor(interpreter, 2)
  count = int(get_output_tensor(interpreter, 3))

  results = []
  for i in range(count):
    if scores[i] >= threshold:
      result = {
          'bounding_box': boxes[i],
          'class_id': classes[i],
          'score': scores[i]
      }
      results.append(result)
  return results

def main():
    labels = load_labels()
    interpreter = Interpreter('detect.tflite')
    interpreter.allocate_tensors()
    _, input_height, input_width, _ = interpreter.get_input_details()[0]['shape']

    cap = cv2.VideoCapture(0)
    while cap.isOpened():
        ret, frame = cap.read()
        img = cv2.resize(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), (320,320))
        res = detect_objects(interpreter, img, 0.8)
        print(res)

        for result in res:
            ymin, xmin, ymax, xmax = result['bounding_box']
            xmin = int(max(1,xmin * CAMERA_WIDTH))
            xmax = int(min(CAMERA_WIDTH, xmax * CAMERA_WIDTH))
            ymin = int(max(1, ymin * CAMERA_HEIGHT))
            ymax = int(min(CAMERA_HEIGHT, ymax * CAMERA_HEIGHT))
            
            cv2.rectangle(frame,(xmin, ymin),(xmax, ymax),(0,255,0),3)
            cv2.putText(frame,labels[int(result['class_id'])],(xmin, min(ymax, CAMERA_HEIGHT-20)), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(255,255,255),2,cv2.LINE_AA) 

        cv2.imshow('Pi Feed', frame)

        if cv2.waitKey(10) & 0xFF ==ord('q'):
            cap.release()
            cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

模型时,该模型是SSD Mobilenet 640x640,该模型的图像是在Raspberry Pi上以1028x720的形式拍摄的,但在模型训练期间被缩小。但是我仍然会遇到这个错误,我不确定如何解决。

I've been trying to run a detection model on a raspberry pi but when I try I get the error that:

could not broadcast input array from shape (320,320,3) into shape (640,640,3)

when I run this

import re
import cv2
from tflite_runtime.interpreter import Interpreter
import numpy as np

CAMERA_WIDTH = 640
CAMERA_HEIGHT = 480

def load_labels(path='labels.txt'):
  """Loads the labels file. Supports files with or without index numbers."""
  with open(path, 'r', encoding='utf-8') as f:
    lines = f.readlines()
    labels = {}
    for row_number, content in enumerate(lines):
      pair = re.split(r'[:\s]+', content.strip(), maxsplit=1)
      if len(pair) == 2 and pair[0].strip().isdigit():
        labels[int(pair[0])] = pair[1].strip()
      else:
        labels[row_number] = pair[0].strip()
  return labels

def set_input_tensor(interpreter, image):
  """Sets the input tensor."""
  tensor_index = interpreter.get_input_details()[0]['index']
  input_tensor = interpreter.tensor(tensor_index)()[0]
  input_tensor[:, :] = np.expand_dims((image-255)/255, axis=0)


def get_output_tensor(interpreter, index):
  """Returns the output tensor at the given index."""
  output_details = interpreter.get_output_details()[index]
  tensor = np.squeeze(interpreter.get_tensor(output_details['index']))
  return tensor


def detect_objects(interpreter, image, threshold):
  """Returns a list of detection results, each a dictionary of object info."""
  set_input_tensor(interpreter, image)
  interpreter.invoke()
  # Get all output details
  boxes = get_output_tensor(interpreter, 0)
  classes = get_output_tensor(interpreter, 1)
  scores = get_output_tensor(interpreter, 2)
  count = int(get_output_tensor(interpreter, 3))

  results = []
  for i in range(count):
    if scores[i] >= threshold:
      result = {
          'bounding_box': boxes[i],
          'class_id': classes[i],
          'score': scores[i]
      }
      results.append(result)
  return results

def main():
    labels = load_labels()
    interpreter = Interpreter('detect.tflite')
    interpreter.allocate_tensors()
    _, input_height, input_width, _ = interpreter.get_input_details()[0]['shape']

    cap = cv2.VideoCapture(0)
    while cap.isOpened():
        ret, frame = cap.read()
        img = cv2.resize(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), (320,320))
        res = detect_objects(interpreter, img, 0.8)
        print(res)

        for result in res:
            ymin, xmin, ymax, xmax = result['bounding_box']
            xmin = int(max(1,xmin * CAMERA_WIDTH))
            xmax = int(min(CAMERA_WIDTH, xmax * CAMERA_WIDTH))
            ymin = int(max(1, ymin * CAMERA_HEIGHT))
            ymax = int(min(CAMERA_HEIGHT, ymax * CAMERA_HEIGHT))
            
            cv2.rectangle(frame,(xmin, ymin),(xmax, ymax),(0,255,0),3)
            cv2.putText(frame,labels[int(result['class_id'])],(xmin, min(ymax, CAMERA_HEIGHT-20)), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(255,255,255),2,cv2.LINE_AA) 

        cv2.imshow('Pi Feed', frame)

        if cv2.waitKey(10) & 0xFF ==ord('q'):
            cap.release()
            cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

the model is an SSD Mobilenet 640x640 and the images for the model were taken on the raspberry pi as 1028x720 but were downscaled during model training. But I still get this error and I'm not sure how to fix it.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文