如何将列中的值转换为“是”和“不” R 中多元回归的值

发布于 2025-01-17 05:54:44 字数 6729 浏览 1 评论 0原文

我正在使用以下可重现的数据集进行多元线性回归(这是我的数据的一小部分样本):

structure(list(age = c(62.84998, 60.33899, 52.74698, 42.38498, 
 79.88495, 93.01599, 62.37097, 86.83899, 85.65594, 42.25897), 
     death = c(0, 1, 1, 1, 0, 1, 1, 1, 1, 1), sex = c("male", 
     "female", "female", "female", "female", "male", "male", "male", 
     "male", "female"), hospdead = c(0, 1, 0, 0, 0, 1, 0, 0, 0, 
     0), slos = c(5, 4, 17, 3, 16, 4, 9, 7, 12, 8), d.time = c(2029, 
     4, 47, 133, 2029, 4, 659, 142, 63, 370), dzgroup = c("Lung Cancer", 
     "Cirrhosis", "Cirrhosis", "Lung Cancer", "ARF/MOSF w/Sepsis", 
     "Coma", "CHF", "CHF", "Lung Cancer", "Colon Cancer"), dzclass = c("Cancer", 
     "COPD/CHF/Cirrhosis", "COPD/CHF/Cirrhosis", "Cancer", "ARF/MOSF", 
     "Coma", "COPD/CHF/Cirrhosis", "COPD/CHF/Cirrhosis", "Cancer", 
     "Cancer"), num.co = c(0, 2, 2, 2, 1, 1, 1, 3, 2, 0), edu = c(11, 
     12, 12, 11, NA, 14, 14, NA, 12, 11), income = c("$11-$25k", 
     "$11-$25k", "under $11k", "under $11k", NA, NA, "$25-$50k", 
     NA, NA, "$25-$50k"), scoma = c(0, 44, 0, 0, 26, 55, 0, 26, 
     26, 0), charges = c(9715, 34496, 41094, 3075, 50127, 6884, 
     30460, 30460, NA, 9914), totcst = c(NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_), totmcst = c(NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
     ), avtisst = c(7, 29, 13, 7, 18.666656, 5, 8, 6.5, 8.5, 8
     ), race = c("other", "white", "white", "white", "white", 
     "white", "white", "white", "black", "hispanic"), sps = c(33.8984375, 
     52.6953125, 20.5, 20.0976562, 23.5, 19.3984375, 17.296875, 
     21.5976562, 15.8984375, 2.2998047), aps = c(20, 74, 45, 19, 
     30, 27, 46, 53, 17, 9), surv2m = c(0.262939453, 0.0009999275, 
     0.790893555, 0.698974609, 0.634887695, 0.284973145, 0.892944336, 
     0.670898438, 0.570922852, 0.952880859), surv6m = c(0.0369949341, 
     0, 0.664916992, 0.411987305, 0.532958984, 0.214996338, 0.820922852, 
     0.498962402, 0.24899292, 0.887939453), hday = c(1, 3, 4, 
     1, 3, 1, 1, 1, 1, 1), diabetes = c(0, 0, 0, 0, 0, 0, 0, 1, 
     0, 0), dementia = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0), ca = c("metastatic", 
     "no", "no", "metastatic", "no", "no", "no", "no", "metastatic", 
     "metastatic"), prg2m = c(0.5, 0, 0.75, 0.899999619, 0.899999619, 
     0, NA, 0.799999714, 0.049999982, NA), prg6m = c(0.25, 0, 
     0.5, 0.5, 0.8999996, 0, 0.6999998, 0.3999999, 0.0001249999, 
     NA), dnr = c("no dnr", NA, "no dnr", "no dnr", "no dnr", 
     "no dnr", "no dnr", "no dnr", "dnr after sadm", "no dnr"), 
     dnrday = c(5, NA, 17, 3, 16, 4, 9, 7, 2, 8), meanbp = c(97, 
     43, 70, 75, 59, 110, 78, 72, 97, 84), wblc = c(6, 17.0976562, 
     8.5, 9.09960938, 13.5, 10.3984375, 11.6992188, 13.5996094, 
     9.69921875, 11.2988281), hrt = c(69, 112, 88, 88, 112, 101, 
     120, 100, 56, 94), resp = c(22, 34, 28, 32, 20, 44, 28, 26, 
     20, 20), temp = c(36, 34.59375, 37.39844, 35, 37.89844, 38.39844, 
     37.39844, 37.59375, 36.59375, 38.19531), pafi = c(388, 98, 
     231.65625, NA, 173.3125, 266.625, 309.5, 404.75, 357.125, 
     NA), alb = c(1.7998047, NA, NA, NA, NA, NA, 4.7998047, NA, 
     NA, 4.6992188), bili = c(0.19998169, NA, 2.19970703, NA, 
     NA, NA, 0.39996338, NA, 0.39996338, 0.19998169), crea = c(1.19995117, 
     5.5, 2, 0.79992676, 0.79992676, 0.69995117, 1.59985352, 2, 
     1, 0.79992676), sod = c(141, 132, 134, 139, 143, 140, 132, 
     139, 143, 139), ph = c(7.459961, 7.25, 7.459961, NA, 7.509766, 
     7.65918, 7.479492, 7.509766, 7.449219, NA), glucose = c(NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_), bun = c(NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_), urine = c(NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_), adlp = c(7, NA, 1, 0, NA, NA, 0, NA, NA, 0), adls = c(7, 
     1, 0, 0, 2, 1, 1, 0, 7, NA), sfdm2 = c(NA, "<2 mo. follow-up", 
     "<2 mo. follow-up", "no(M2 and SIP pres)", "no(M2 and SIP pres)", 
     "<2 mo. follow-up", "no(M2 and SIP pres)", NA, NA, NA), adlsc = c(7, 
     1, 0, 0, 2, 1, 1, 0, 7, 0.4947999)), row.names = c(NA, 10L
 ), class = "data.frame")

我在这里有回归公式。

SB_xlsx13 = SB_xlsx13[!is.na(SB_xlsx13$dnrday), ]
SB_xlsx13 = SB_xlsx13[!is.na(SB_xlsx13$sps), ]
MLR_2 = lm(SB_xlsx13$hospdead ~ SB_xlsx13$dzclass_f + SB_xlsx13$age + SB_xlsx13$sex + SB_xlsx13$num.co + SB_xlsx13$sps)
summary(MLR_2)
## 
## Call:
## lm(formula = SB_xlsx13$hospdead ~ SB_xlsx13$dzclass_f + SB_xlsx13$age + 
##     SB_xlsx13$sex + SB_xlsx13$num.co + SB_xlsx13$sps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.26132 -0.25758 -0.08914  0.15412  1.14048 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                           -0.3519553  0.0224017 -15.711  < 2e-16
## SB_xlsx13$dzclass_fCancer             -0.0870012  0.0123327  -7.055 1.86e-12
## SB_xlsx13$dzclass_fComa                0.2907825  0.0164644  17.661  < 2e-16
## SB_xlsx13$dzclass_fCOPD/CHF/Cirrhosis -0.1378731  0.0104787 -13.157  < 2e-16
## SB_xlsx13$age                          0.0027082  0.0002555  10.598  < 2e-16
## SB_xlsx13$sexmale                      0.0022789  0.0079126   0.288    0.773
## SB_xlsx13$num.co                       0.0028155  0.0032577   0.864    0.387
## SB_xlsx13$sps                          0.0184986  0.0004393  42.105  < 2e-16
##                                          
## (Intercept)                           ***
## SB_xlsx13$dzclass_fCancer             ***
## SB_xlsx13$dzclass_fComa               ***
## SB_xlsx13$dzclass_fCOPD/CHF/Cirrhosis ***
## SB_xlsx13$age                         ***
## SB_xlsx13$sexmale                        
## SB_xlsx13$num.co                         
## SB_xlsx13$sps                         ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3724 on 9067 degrees of freedom
## Multiple R-squared:  0.2772, Adjusted R-squared:  0.2767 
## F-statistic: 496.8 on 7 and 9067 DF,  p-value: < 2.2e-16

回归结果很好;但是,我想再添加一个变量,即第三天的 dnr 状态。如果该值小于或等于 3,则存在 DNR;如果该值大于 3,则不存在 DNR。我之前使用此代码对先前任务的这些值进行了子集化:

YesDNR <- subset(SB_xlsx12, dnrday <= 3, na.rm=TRUE)
NoDNR <- subset(SB_xlsx12, dnrday > 3, na.rm=TRUE)

这工作正常,但我无法真正在回归模型中使用这些子集。我假设要使模型正常工作,我需要将“dnrday”列中每个 3 或更少 (<=) 的值转换为“yes”,并将每个超过 3 (>) 的值转换为“no”。我的这种想法是否正确?如果是,我将如何完成改变这些价值观。

I am doing a multiple linear regression with the following reproducible dataset (this is a small sample of my data):

structure(list(age = c(62.84998, 60.33899, 52.74698, 42.38498, 
 79.88495, 93.01599, 62.37097, 86.83899, 85.65594, 42.25897), 
     death = c(0, 1, 1, 1, 0, 1, 1, 1, 1, 1), sex = c("male", 
     "female", "female", "female", "female", "male", "male", "male", 
     "male", "female"), hospdead = c(0, 1, 0, 0, 0, 1, 0, 0, 0, 
     0), slos = c(5, 4, 17, 3, 16, 4, 9, 7, 12, 8), d.time = c(2029, 
     4, 47, 133, 2029, 4, 659, 142, 63, 370), dzgroup = c("Lung Cancer", 
     "Cirrhosis", "Cirrhosis", "Lung Cancer", "ARF/MOSF w/Sepsis", 
     "Coma", "CHF", "CHF", "Lung Cancer", "Colon Cancer"), dzclass = c("Cancer", 
     "COPD/CHF/Cirrhosis", "COPD/CHF/Cirrhosis", "Cancer", "ARF/MOSF", 
     "Coma", "COPD/CHF/Cirrhosis", "COPD/CHF/Cirrhosis", "Cancer", 
     "Cancer"), num.co = c(0, 2, 2, 2, 1, 1, 1, 3, 2, 0), edu = c(11, 
     12, 12, 11, NA, 14, 14, NA, 12, 11), income = c("$11-$25k", 
     "$11-$25k", "under $11k", "under $11k", NA, NA, "$25-$50k", 
     NA, NA, "$25-$50k"), scoma = c(0, 44, 0, 0, 26, 55, 0, 26, 
     26, 0), charges = c(9715, 34496, 41094, 3075, 50127, 6884, 
     30460, 30460, NA, 9914), totcst = c(NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_), totmcst = c(NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
     ), avtisst = c(7, 29, 13, 7, 18.666656, 5, 8, 6.5, 8.5, 8
     ), race = c("other", "white", "white", "white", "white", 
     "white", "white", "white", "black", "hispanic"), sps = c(33.8984375, 
     52.6953125, 20.5, 20.0976562, 23.5, 19.3984375, 17.296875, 
     21.5976562, 15.8984375, 2.2998047), aps = c(20, 74, 45, 19, 
     30, 27, 46, 53, 17, 9), surv2m = c(0.262939453, 0.0009999275, 
     0.790893555, 0.698974609, 0.634887695, 0.284973145, 0.892944336, 
     0.670898438, 0.570922852, 0.952880859), surv6m = c(0.0369949341, 
     0, 0.664916992, 0.411987305, 0.532958984, 0.214996338, 0.820922852, 
     0.498962402, 0.24899292, 0.887939453), hday = c(1, 3, 4, 
     1, 3, 1, 1, 1, 1, 1), diabetes = c(0, 0, 0, 0, 0, 0, 0, 1, 
     0, 0), dementia = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0), ca = c("metastatic", 
     "no", "no", "metastatic", "no", "no", "no", "no", "metastatic", 
     "metastatic"), prg2m = c(0.5, 0, 0.75, 0.899999619, 0.899999619, 
     0, NA, 0.799999714, 0.049999982, NA), prg6m = c(0.25, 0, 
     0.5, 0.5, 0.8999996, 0, 0.6999998, 0.3999999, 0.0001249999, 
     NA), dnr = c("no dnr", NA, "no dnr", "no dnr", "no dnr", 
     "no dnr", "no dnr", "no dnr", "dnr after sadm", "no dnr"), 
     dnrday = c(5, NA, 17, 3, 16, 4, 9, 7, 2, 8), meanbp = c(97, 
     43, 70, 75, 59, 110, 78, 72, 97, 84), wblc = c(6, 17.0976562, 
     8.5, 9.09960938, 13.5, 10.3984375, 11.6992188, 13.5996094, 
     9.69921875, 11.2988281), hrt = c(69, 112, 88, 88, 112, 101, 
     120, 100, 56, 94), resp = c(22, 34, 28, 32, 20, 44, 28, 26, 
     20, 20), temp = c(36, 34.59375, 37.39844, 35, 37.89844, 38.39844, 
     37.39844, 37.59375, 36.59375, 38.19531), pafi = c(388, 98, 
     231.65625, NA, 173.3125, 266.625, 309.5, 404.75, 357.125, 
     NA), alb = c(1.7998047, NA, NA, NA, NA, NA, 4.7998047, NA, 
     NA, 4.6992188), bili = c(0.19998169, NA, 2.19970703, NA, 
     NA, NA, 0.39996338, NA, 0.39996338, 0.19998169), crea = c(1.19995117, 
     5.5, 2, 0.79992676, 0.79992676, 0.69995117, 1.59985352, 2, 
     1, 0.79992676), sod = c(141, 132, 134, 139, 143, 140, 132, 
     139, 143, 139), ph = c(7.459961, 7.25, 7.459961, NA, 7.509766, 
     7.65918, 7.479492, 7.509766, 7.449219, NA), glucose = c(NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_), bun = c(NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_), urine = c(NA_real_, NA_real_, NA_real_, 
     NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 
     NA_real_), adlp = c(7, NA, 1, 0, NA, NA, 0, NA, NA, 0), adls = c(7, 
     1, 0, 0, 2, 1, 1, 0, 7, NA), sfdm2 = c(NA, "<2 mo. follow-up", 
     "<2 mo. follow-up", "no(M2 and SIP pres)", "no(M2 and SIP pres)", 
     "<2 mo. follow-up", "no(M2 and SIP pres)", NA, NA, NA), adlsc = c(7, 
     1, 0, 0, 2, 1, 1, 0, 7, 0.4947999)), row.names = c(NA, 10L
 ), class = "data.frame")

I have my formula for the regression here.

SB_xlsx13 = SB_xlsx13[!is.na(SB_xlsx13$dnrday), ]
SB_xlsx13 = SB_xlsx13[!is.na(SB_xlsx13$sps), ]
MLR_2 = lm(SB_xlsx13$hospdead ~ SB_xlsx13$dzclass_f + SB_xlsx13$age + SB_xlsx13$sex + SB_xlsx13$num.co + SB_xlsx13$sps)
summary(MLR_2)
## 
## Call:
## lm(formula = SB_xlsx13$hospdead ~ SB_xlsx13$dzclass_f + SB_xlsx13$age + 
##     SB_xlsx13$sex + SB_xlsx13$num.co + SB_xlsx13$sps)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.26132 -0.25758 -0.08914  0.15412  1.14048 
## 
## Coefficients:
##                                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)                           -0.3519553  0.0224017 -15.711  < 2e-16
## SB_xlsx13$dzclass_fCancer             -0.0870012  0.0123327  -7.055 1.86e-12
## SB_xlsx13$dzclass_fComa                0.2907825  0.0164644  17.661  < 2e-16
## SB_xlsx13$dzclass_fCOPD/CHF/Cirrhosis -0.1378731  0.0104787 -13.157  < 2e-16
## SB_xlsx13$age                          0.0027082  0.0002555  10.598  < 2e-16
## SB_xlsx13$sexmale                      0.0022789  0.0079126   0.288    0.773
## SB_xlsx13$num.co                       0.0028155  0.0032577   0.864    0.387
## SB_xlsx13$sps                          0.0184986  0.0004393  42.105  < 2e-16
##                                          
## (Intercept)                           ***
## SB_xlsx13$dzclass_fCancer             ***
## SB_xlsx13$dzclass_fComa               ***
## SB_xlsx13$dzclass_fCOPD/CHF/Cirrhosis ***
## SB_xlsx13$age                         ***
## SB_xlsx13$sexmale                        
## SB_xlsx13$num.co                         
## SB_xlsx13$sps                         ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3724 on 9067 degrees of freedom
## Multiple R-squared:  0.2772, Adjusted R-squared:  0.2767 
## F-statistic: 496.8 on 7 and 9067 DF,  p-value: < 2.2e-16

The regression comes out just fine; however, I want to add one more variable(s), which is dnr status at day three. If the value is 3 or less, there is a DNR and if the value is over 3, there is not a DNR. I previously subsetted these values for a previous task using this code:

YesDNR <- subset(SB_xlsx12, dnrday <= 3, na.rm=TRUE)
NoDNR <- subset(SB_xlsx12, dnrday > 3, na.rm=TRUE)

This worked fine, but I can't really use these subsets in my regression model. I would assume to make the model work, I would need to translate every value of 3 or less (<=) in the "dnrday" column to "yes" and every value over 3 (>) to "no". Am I correct on this thinking, and if so, how would I accomplish changing those values.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

十年九夏 2025-01-24 05:54:44

我将创建一个新专栏 - 请参阅下面的两个选项。

(注意,在 lm() 中,如果将协变量列为 data =,则每次添加协变量时都不必指定 SB_xlsx13$参数一次!这将使您的输出更易于阅读。)

Tidyverse 方法mutatecase_when

library(dplyr)
SB_xlsx13 <- SB_xlsx13 %>%
  mutate(dnr_d3 = case_when(dnrday <= 3 ~ "yes",
                            dnrday > 3 ~ "no",
                            TRUE ~ NA_character_))

MLR_3 <- lm(hospdead ~ dzclass + age + sex + num.co + sps + dnr_d3,
            data = SB_xlsx13)

Base R 方法

SB_xlsx13$dnr_d3[SB_xlsx13$dnrday <= 3] <- "yes"
SB_xlsx13$dnr_d3[SB_xlsx13$dnrday > 3] <- "no"
MLR_4 <- lm(hospdead ~ dzclass + age + sex + num.co + sps + dnr_d3,
            data = SB_xlsx13)

I would create a new column - see two options below.

(NB in lm() you don't have to specify SB_xlsx13$ each time you add a covariate if you list it as the data = argument once! This will make your output easier to read.)

Tidyverse approach: mutate and case_when:

library(dplyr)
SB_xlsx13 <- SB_xlsx13 %>%
  mutate(dnr_d3 = case_when(dnrday <= 3 ~ "yes",
                            dnrday > 3 ~ "no",
                            TRUE ~ NA_character_))

MLR_3 <- lm(hospdead ~ dzclass + age + sex + num.co + sps + dnr_d3,
            data = SB_xlsx13)

Base R approach:

SB_xlsx13$dnr_d3[SB_xlsx13$dnrday <= 3] <- "yes"
SB_xlsx13$dnr_d3[SB_xlsx13$dnrday > 3] <- "no"
MLR_4 <- lm(hospdead ~ dzclass + age + sex + num.co + sps + dnr_d3,
            data = SB_xlsx13)
分開簡單 2025-01-24 05:54:44

您只需在公式中使用 AsIs 函数 I() 即可。还可以使用 factor 轻松分解变量。

lm(hospdead ~ factor(dzclass) + I(dnrday <= 3) + age + sex + num.co + sps, 
   SB_xlsx13)

这可能看起来有点不干净,但对于处理数据来说很不错。一旦您对某些内容感到满意,您就可以使用 transform 轻松地在数据中更改它。例如,只需使用 dnrday <= 3 即可创建布尔变量 DNR。

SB_xlsx13 <- transform(SB_xlsx13,
                       dzclass_f=as.factor(dzclass),
                       dnrday_3=dnrday <= 3)

You may simply use the AsIs function I() in the formula. Also use factor to easily factorize variables.

lm(hospdead ~ factor(dzclass) + I(dnrday <= 3) + age + sex + num.co + sps, 
   SB_xlsx13)

This might look a bit unclean but it's nice for playing around with the data. Once you are happy with something you may easily change it in the data using transform. For instance, the DNR variable can be created boolean just using dnrday <= 3.

SB_xlsx13 <- transform(SB_xlsx13,
                       dzclass_f=as.factor(dzclass),
                       dnrday_3=dnrday <= 3)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文