Scikit Learn DecisionTreeRegressor 算法不一致
我目前正在使用决策树(使用 Scikit Learn DecisionTreeRegressor)来拟合回归树。我面临的问题是,使用与 6 个月前相同的数据的算法,输出(即最佳分割点)略有变化。我的猜测是,他们计算 mse 标准或类似标准的方式可能略有改变。有人知道吗?
I am currently using decision trees (using Scikit Learn DecisionTreeRegressor) to fit Regression tree. The problem I'm facing is that using the algorithm with same data as 6 months ago there is a slight change in output (ie. the optimal split point). My guess is that it could be that they have changed slightly the way they compute the mse criterion or something like that. Anybody knows?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
DecisionTreeRegressor
表现出随机行为,除非您指定random_state
作为构造函数的参数。random_state
的详细信息>文档解释了随机性可能影响你的执行的地方 - 特别参见我突出显示的粗体部分:DecisionTreeRegressor
exhibits random behavior unless you specify arandom_state
as an argument of the constructor.The details of
random_state
fromthe documentation
explains the spots where randomness might affect your execution - see specially the bold part I highlighted: