根据 numpy 数组的出现次数过滤元素
我有以下 2D numpy 数组 M
M = np.array([[1,1,1,0,0,0,0,0,0,0,0],
[1,1,1,0,0,0,0,0,0,1,1],
[1,1,1,0,0,0,0,0,0,1,1],
[0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,1,1,1,0,0,0],
[1,1,1,0,1,1,1,1,0,0,0],
[1,1,1,0,0,1,1,1,0,0,0],
[1,1,1,0,0,1,1,1,0,0,0]])
,我想识别它的点(值==1并且相互连接的像素)。
感谢 scipy 中的“label”函数,我可以识别矩阵中的所有点。输出应如下所示:
Output, Nbr= label(M)
#Output= array([[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2],
# [0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0],
# [0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0],
# [4, 4, 4, 0, 3, 3, 3, 3, 0, 0, 0],
# [4, 4, 4, 0, 0, 3, 3, 3, 0, 0, 0],
# [4, 4, 4, 0, 0, 3, 3, 3, 0, 0, 0]])
我只想拥有包含 9 个元素的点,这意味着第一个和第四个点。
使用这样的 for 循环效果很好:
for i in range(Nbr+1):
Spot= np.argwhere(components[:,:]== i)
if len(Spot)!=9:
M[Spot[:, 0], Spot[:, 1]]=0
#M= array([[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])
问题是当我的 Spots 超过 4 个时,我的代码会变慢。
有没有更快的替代方案可以完成 for 循环的工作?
谢谢。
i have the following 2D numpy array M
M = np.array([[1,1,1,0,0,0,0,0,0,0,0],
[1,1,1,0,0,0,0,0,0,1,1],
[1,1,1,0,0,0,0,0,0,1,1],
[0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,1,1,1,0,0,0],
[1,1,1,0,1,1,1,1,0,0,0],
[1,1,1,0,0,1,1,1,0,0,0],
[1,1,1,0,0,1,1,1,0,0,0]])
which I want to identify its spots (Pixels with value==1 and connected to each other).
Thanks to the function 'label' from scipy, I can identify all of my spots in the matrix. The output should seem like this:
Output, Nbr= label(M)
#Output= array([[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2],
# [0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0],
# [0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0],
# [4, 4, 4, 0, 3, 3, 3, 3, 0, 0, 0],
# [4, 4, 4, 0, 0, 3, 3, 3, 0, 0, 0],
# [4, 4, 4, 0, 0, 3, 3, 3, 0, 0, 0]])
I want only to have spots with 9 elements, that means the first and fourth spot.
using a for loop like this works fine:
for i in range(Nbr+1):
Spot= np.argwhere(components[:,:]== i)
if len(Spot)!=9:
M[Spot[:, 0], Spot[:, 1]]=0
#M= array([[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
# [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])
The porblem is when my Spots are more than 4, my code is slower.
Is there any faster alternative that can do the job of the for loop?
Thanks.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论