在哪里可以获得 Q# 机器学习的详细教程或文档
最近,我正在学习用于机器学习的Q#语言。半月形样本已正确运行。现在我想了解代码的细节。但找到的解释太少了。方法太多看不懂,也没有详细介绍。例如,它只解释了方法的名称、参数,但没有进一步的信息。 我实在是无法理解。 那么有没有针对初学者的机器学习的退出详细文档呢?非常感谢你。
如何获取被扣留的文件
Recently, I'm learning the Q# language for machine learning. The sample of half-moons has been run correctly. Now I want to learn the detail of the code. But there is too little explanation to find. There are too many methods I can't understand and there are no introductions in detail. For example, it only explains the name, parameters for the method, but no further information.
I really can't understand it.
So is there an exits detailed document for machine learning for beginners? Thank u very much.
how to get the detained document
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
Q# 机器学习库实现了一种特定方法,即以电路为中心的量子分类器。您可以在 https://learn.microsoft.com/en-us/azure/quantum/user-guide/libraries/machine-learning/intro 以及该部分中的后续页面。它所基于的论文是 '以电路为中心的量子分类器',Maria Schuld、Alex Bocharov、Krysta Svore 和 Nathan Wiebe< /a>.
Q# machine learning library implements one specific approach, circuit-centric quantum classifiers. You can find the documentation for this approach at https://learn.microsoft.com/en-us/azure/quantum/user-guide/libraries/machine-learning/intro and the subsequent pages in that section. The paper it's based on is 'Circuit-centric quantum classifiers', Maria Schuld, Alex Bocharov, Krysta Svore and Nathan Wiebe.