从 GptNeo 模型生成 10000 个句子会导致内存不足错误
我正在做一些工作,我想从 GptNeo 模型生成 10000 个句子。我有一个大小为 40GB 的 GPU,并且正在 GPU 中运行模型,但每次代码都会耗尽内存。我可以生成的句子数量是否有限制?下面是我的代码的一小段。
tokenizer = GPT2Tokenizer.from_pretrained(model)
model = GPTNeoForCausalLM.from_pretrained(model , pad_token_id = tokenizer.eos_token_id)
model.to(device)
input_ids = tokenizer.encode(sentence, return_tensors=‘pt’)
gen_tokens = model.generate(
input_ids,
do_sample=True,
top_k=50,
num_return_sequences=10000
)
I was doing some work where I wanted to generate 10000 sentences from the GptNeo Model. I have a GPU of size 40GB and am running the model in the GPU but everytime the code runs out of memory. Is there a limitation to the number of sentences that I can generate. Below is a small snippet of my code.
tokenizer = GPT2Tokenizer.from_pretrained(model)
model = GPTNeoForCausalLM.from_pretrained(model , pad_token_id = tokenizer.eos_token_id)
model.to(device)
input_ids = tokenizer.encode(sentence, return_tensors=‘pt’)
gen_tokens = model.generate(
input_ids,
do_sample=True,
top_k=50,
num_return_sequences=10000
)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论