无论我如何安装,RAPIDS.ai 依赖项 cuml 和 cudf 都找不到
我已遵循 RAPIDS.ai 的 AWS-EC2 设置中的每个版本的说明: https://rapids .ai/cloud#AWS-EC2
我可以确认我使用的是说明中的确切实例类型,并严格按照步骤操作。
当我尝试使用 docker 方法时,不接受 --gpus all
命令。
当我尝试使用 conda 方法时,安装失败并出现错误:
PackageNotFoundError: Packages missing in current channels:
- glibc
我已经尝试了(许多)提供的不同解决方案来解决这两个问题,但它们似乎都不起作用。我真的只需要在笔记本中使用 cuml 和 cudf 导入来测试一些 python 代码。已经这样做了 7 个小时(在放弃我的本地和 SageMaker 之后)。
I have followed every version of the instructions on the AWS-EC2 setup for RAPIDS.ai: https://rapids.ai/cloud#AWS-EC2
I can confirm that I am using the exact instance type in the instructions, and following the steps exactly.
When I try to use the docker approach, the --gpus all
command is not accepted.
When I try to use the conda approach, the install fails with the error:
PackageNotFoundError: Packages missing in current channels:
- glibc
I have tried (many) different solutions provided to solve both of these problems, none of them seem to work. I really just need to test some python code with cuml
and cudf
imports in a notebook. Been at this for 7 hours (after giving up on my local and SageMaker).
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您注意到
--gpus all
命令未被接受,这表明您没有安装 NVIDIA Docker 运行时。我按照您链接的说明操作,确实遇到了一个问题,
sudo yum install -y nvidia-docker2
命令失败,我需要禁用导致冲突的 Amazon yum 存储库 如本期所述。完成此操作并运行 sudo systemctl restart docker 后,我就能够启动 RAPIDS 容器。
You note that the
--gpus all
command is not accepted, which suggests that you do not have the NVIDIA Docker runtime installed.I followed the instructions you linked and I did run into an issue where the
sudo yum install -y nvidia-docker2
command failed and I needed to disable an Amazon yum repo that was causing come conflicts as outlined in this issue.Once I'd done that and run
sudo systemctl restart docker
I was able to start the RAPIDS container.事实证明,文档中建议的第一个 AMI 不兼容。请改用深度学习 NVIDIA 一款。
Turns out, the frist AMI suggested in the documentation is not compatible. Use the Deep Learning NVIDIA one instead.