如果我将 poll() 方法与 PriorityQueue 和类似接口一起使用,它会返回什么
我正在使用PriorityQueue
并且我已经使用compareTo方法实现了类似的类,
现在我想知道我的队列是否已排序,如果我使用poll()
方法将这返回最小costSum的队列?
类:State.java
public class State<N extends Comparable<N>> implements Comparable<State<N>> {
private final ArrayList<Integer> board;
private State<N> predecessor;
private double totalCostFromStart; //g(x)
private double minimumRemainingCostToTarget; //h(x)
private double costSum; //f(x)
private Move direction;
public State(ArrayList<Integer> board,
State<N> predecessor,
double minimumRemainingCostToTarget,
Move direction) {
this.board = board;
this.predecessor = predecessor;
this.totalCostFromStart = predecessor == null ? 0 : predecessor.totalCostFromStart + 1;
this.minimumRemainingCostToTarget = minimumRemainingCostToTarget;
this.direction=direction;
calculateCostSum();
}
private void calculateCostSum() {
this.costSum = this.totalCostFromStart + this.minimumRemainingCostToTarget;
}
@Override
public int compareTo(State<N> nNode) {
int compare = Double.compare(this.costSum, nNode.costSum);
if (compare == 0) return 0;
else return this.costSum>nNode.costSum ? 1:-1;
}
类:AStar.java
public State AStar(ArrayList<Integer> initialBoard,
State source,
ArrayList<Integer> target,
Heuristic heuristic){
int minimumRemainingCostToTarget= heuristic.getRank(initialBoard, target);
source = new State( initialBoard,null,0, minimumRemainingCostToTarget,null);
PriorityQueue<State> open = new PriorityQueue<>();
Set<ArrayList<Integer>> close = new HashSet<>(181440);
//add initial state to ouverts, f(n) is an attribut in source.
open.add(source);
while(!close.isEmpty()){
State currentState = open.poll();//<<<----------------------
}
return null;
}
I'm using PriorityQueue
and i've implemented comparable class, with compareTo method,
Now i want to know if my queue is sorted, if i use poll()
method will this return the queue of the minimum costSum?
Class: State.java
public class State<N extends Comparable<N>> implements Comparable<State<N>> {
private final ArrayList<Integer> board;
private State<N> predecessor;
private double totalCostFromStart; //g(x)
private double minimumRemainingCostToTarget; //h(x)
private double costSum; //f(x)
private Move direction;
public State(ArrayList<Integer> board,
State<N> predecessor,
double minimumRemainingCostToTarget,
Move direction) {
this.board = board;
this.predecessor = predecessor;
this.totalCostFromStart = predecessor == null ? 0 : predecessor.totalCostFromStart + 1;
this.minimumRemainingCostToTarget = minimumRemainingCostToTarget;
this.direction=direction;
calculateCostSum();
}
private void calculateCostSum() {
this.costSum = this.totalCostFromStart + this.minimumRemainingCostToTarget;
}
@Override
public int compareTo(State<N> nNode) {
int compare = Double.compare(this.costSum, nNode.costSum);
if (compare == 0) return 0;
else return this.costSum>nNode.costSum ? 1:-1;
}
Class : AStar.java
public State AStar(ArrayList<Integer> initialBoard,
State source,
ArrayList<Integer> target,
Heuristic heuristic){
int minimumRemainingCostToTarget= heuristic.getRank(initialBoard, target);
source = new State( initialBoard,null,0, minimumRemainingCostToTarget,null);
PriorityQueue<State> open = new PriorityQueue<>();
Set<ArrayList<Integer>> close = new HashSet<>(181440);
//add initial state to ouverts, f(n) is an attribut in source.
open.add(source);
while(!close.isEmpty()){
State currentState = open.poll();//<<<----------------------
}
return null;
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
Javadoc 描述了这一点:
所以,是的,它是最小元素。
但请注意,队列未内部排序:如果打印优先级队列,您可能会注意到它们不是按升序显示的。元素只是按照堆属性的顺序存储,一旦最小元素被删除,就可以有效地更新数据结构。
The Javadoc describes this:
So, yes, it is the minimum element.
Note, however, that the queue isn't internally sorted: if you print a priority queue, you may note that they do not appear in ascending order. The elements are simply stored in an order with the heap property, which allows efficient updating of the data structure once the minimum element is removed.