运行时错误:形状“[-1, 784]”对于大小为 614400 的输入无效
我正在练习实现“自动编码变量贝叶斯(VAE)”论文的代码。 但是,错误“RuntimeError:shape [16, 1, 28, 28] 对于大小为 37632 的输入无效”尚未解决。我不知道如何解决。请帮我。
EPOCHS = 50
BATCH_SIZE = 16
# Transformer code
transformer = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor()
])
# Transform data
train_set = torchvision.datasets.ImageFolder(root = "/home/seclab_dahae/dahye/VAE_data", transform = transformer)
train_set, test_set = train_test_split(train_set, test_size=0.2)
print("Train size is {}, test size is {} ".format(len(train_set), len(test_set)))
#test_set = torchvision.datasets.ImageFolder(root = "/home/seclab_dahae/dahye/VAE_data", transform = transformer)
# Loading trainloader, testloader
trainloader = torch.utils.data.DataLoader(train_set, batch_size = BATCH_SIZE, shuffle = True, num_workers = 2)
testloader = torch.utils.data.DataLoader(test_set, batch_size = BATCH_SIZE, shuffle = True, num_workers = 2)
这是将我的数据带到 pytorch 的代码。
# VAE model
class VAE(nn.Module):
def __init__(self, image_size, hidden_size_1, hidden_size_2, latent_size): #28*28, 512, 256, 2
super(VAE, self).__init__()
self.fc1 = nn.Linear(image_size, hidden_size_1)
self.fc2 = nn.Linear(hidden_size_1, hidden_size_2)
self.fc31 = nn.Linear(hidden_size_2, latent_size)
self.fc32 = nn.Linear(hidden_size_2, latent_size)
self.fc4 = nn.Linear(latent_size, hidden_size_2)
self.fc5 = nn.Linear(hidden_size_2, hidden_size_1)
self.fc6 = nn.Linear(hidden_size_1, image_size)
def encode(self, x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1))
return self.fc31(h2), self.fc32(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + std * eps
def decode(self, z):
h3 = F.relu(self.fc4(z))
h4 = F.relu(self.fc5(h3))
return torch.sigmoid(self.fc6(h4))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
VAE_model = VAE(28*28, 512, 256, 2).to(DEVICE)
optimizer = optim.Adam(VAE_model.parameters(), lr = 1e-3)
这是实现VAE模型的部分。
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction = 'sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE, KLD
这是实现损失函数的代码。
def train(epoch, model, train_loader, optimizer):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(DEVICE)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
BCE, KLD = loss_function(recon_batch, data, mu, logvar)
loss = BCE + KLD
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\t Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print("======> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(train_loader.dataset)
))
def test(epoch, model, test_loader):
model.eval()
test_loss = 0
with torch.no_grad():
for batch_idx, (data, _) in enumerate(test_loader):
data = data.to(DEVICE)
recon_batch, mu, logvar = model(data)
BCE, KLD = loss_function(recon_batch, data, mu, logvar)
loss = BCE + KLD
test_loss += loss.item()
if batch_idx == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n], recon_batch.view(BATCH_SIZE, 1, 28, 28)[:n]]) # (16, 1, 28, 28)
grid = torchvision.utils.make_grid(comparison.cpu()) # (3, 62, 242)
这是火车代码和测试代码。 Jupiter的错误发生在测试代码的“recon_batch.view(BATCH_SIZE, 1, 28, 28)[:n]”部分。
for epoch in tqdm(range(0, EPOCHS)):
train(epoch, VAE_model, trainloader, optimizer)
test(epoch, VAE_model, testloader)
print("\n")
latent_to_image(epoch, VAE_model)
最后,此代码是开始学习的触发器。 我该如何解决这个错误?
I'm practicing code that implements the "Auto-Encoding Variable Bayes (VAE)" paper.
However, the error "RuntimeError:shape [16, 1, 28, 28] is invalid for input of size 37632" has not been resolved. I don't know how to solve it. Please help me.
EPOCHS = 50
BATCH_SIZE = 16
# Transformer code
transformer = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor()
])
# Transform data
train_set = torchvision.datasets.ImageFolder(root = "/home/seclab_dahae/dahye/VAE_data", transform = transformer)
train_set, test_set = train_test_split(train_set, test_size=0.2)
print("Train size is {}, test size is {} ".format(len(train_set), len(test_set)))
#test_set = torchvision.datasets.ImageFolder(root = "/home/seclab_dahae/dahye/VAE_data", transform = transformer)
# Loading trainloader, testloader
trainloader = torch.utils.data.DataLoader(train_set, batch_size = BATCH_SIZE, shuffle = True, num_workers = 2)
testloader = torch.utils.data.DataLoader(test_set, batch_size = BATCH_SIZE, shuffle = True, num_workers = 2)
This is the code that brings my data to pytorch.
# VAE model
class VAE(nn.Module):
def __init__(self, image_size, hidden_size_1, hidden_size_2, latent_size): #28*28, 512, 256, 2
super(VAE, self).__init__()
self.fc1 = nn.Linear(image_size, hidden_size_1)
self.fc2 = nn.Linear(hidden_size_1, hidden_size_2)
self.fc31 = nn.Linear(hidden_size_2, latent_size)
self.fc32 = nn.Linear(hidden_size_2, latent_size)
self.fc4 = nn.Linear(latent_size, hidden_size_2)
self.fc5 = nn.Linear(hidden_size_2, hidden_size_1)
self.fc6 = nn.Linear(hidden_size_1, image_size)
def encode(self, x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1))
return self.fc31(h2), self.fc32(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + std * eps
def decode(self, z):
h3 = F.relu(self.fc4(z))
h4 = F.relu(self.fc5(h3))
return torch.sigmoid(self.fc6(h4))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
VAE_model = VAE(28*28, 512, 256, 2).to(DEVICE)
optimizer = optim.Adam(VAE_model.parameters(), lr = 1e-3)
This is the part that implements the VAE model.
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction = 'sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE, KLD
Here is a code that implements a loss function.
def train(epoch, model, train_loader, optimizer):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(DEVICE)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
BCE, KLD = loss_function(recon_batch, data, mu, logvar)
loss = BCE + KLD
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\t Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print("======> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(train_loader.dataset)
))
def test(epoch, model, test_loader):
model.eval()
test_loss = 0
with torch.no_grad():
for batch_idx, (data, _) in enumerate(test_loader):
data = data.to(DEVICE)
recon_batch, mu, logvar = model(data)
BCE, KLD = loss_function(recon_batch, data, mu, logvar)
loss = BCE + KLD
test_loss += loss.item()
if batch_idx == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n], recon_batch.view(BATCH_SIZE, 1, 28, 28)[:n]]) # (16, 1, 28, 28)
grid = torchvision.utils.make_grid(comparison.cpu()) # (3, 62, 242)
This is the train code and test code.
Jupiter's error occurred in the "recon_batch.view(BATCH_SIZE, 1, 28, 28)[:n]" section of the test code.
for epoch in tqdm(range(0, EPOCHS)):
train(epoch, VAE_model, trainloader, optimizer)
test(epoch, VAE_model, testloader)
print("\n")
latent_to_image(epoch, VAE_model)
Finally, This code is a trigger to start learning.
How can I solve this error?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
您的测试图像似乎不是 28 x 28 像素。您正在尝试
重塑
/
查看
不是 28 x 28 的张量与不兼容的形状。您的测试数据是否可能是一批 600 张大小为 32 x 32 的图像?请注意,当您
重塑
/
查看
张量只能更改元素的排列,但不能更改张量中元素的数量。It seems like your test images are not 28 by 28 pixels. You are trying to
reshape
/view
a tensor that is not 28 by 28 to a shape that is incompatible. Is it possible your test data is a batch of 600 images of size 32 by 32?Note that when you
reshape
/view
a tensor you only change the arrangement of elements, but you cannot change the number of elements in the tensor.解决了类似的错误,
通过替换
我希望这会有所帮助。
A similar error was solved by replacing
by
I hope this helps.
添加 Shai 的答案:
[16, 1, 28, 28] 对于大小为 37632 的输入无效
37632 是 16x3x1x28x28 ;这些图像可能是 RGB 而不是灰度,这会增加额外的 x3 字节
Adding to Shai's answer:
[16, 1, 28, 28] is invalid for input of size 37632
37632 is 16x3x1x28x28 ; possibly these images are RGB and not grayscale, which would add the extra x3 bytes