如何漂浮到熊猫中的对象?
我有以下数据框: all_data
delay settled_users due_amt prime_tagging pending_users cycle_end_date
0.0 114351 8.095711e+07 Prime_Super 236899 2022-03-15
1.0 160691 5.590400e+07 Prime_Super 190559 2022-03-15
2.0 211160 5.818422e+07 Prime_Super 140090 2022-03-15
3.0 270745 7.271832e+07 Prime_Super 80505 2022-03-15
all_data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30 entries, 1 to 6
Data columns (total 6 columns):
delay 30 non-null float64
settled_users 30 non-null int64
due_amt 30 non-null float64
prime_tagging 30 non-null object
pending_users 30 non-null int64
cycle_end_date 30 non-null object
dtypes: float64(2), int64(2), object(2)
我想要一个新列 all_data['delay'] + all_data['cycle_end_date']
但这会抛出 TypeError: unsupported operand type (s) for +: 'int' 和 'datetime.date'
如何实现此目的?请帮忙
pd.to_timedelta(all_data['delay']) + pd.to_datetime(all_data['cycle_end_date'].astype(str))
或其他人 帮忙 结果
1 2022-03-15 00:00:00.000000000
2 2022-03-15 00:00:00.000000001
3 2022-03-15 00:00:00.000000002
4 2022-03-15 00:00:00.000000003
5 2022-03-15 00:00:00.000000004
6 2022-03-15 00:00:00.000000005
1 2022-03-15 00:00:00.000000000
I have the following dataframe: all_data
delay settled_users due_amt prime_tagging pending_users cycle_end_date
0.0 114351 8.095711e+07 Prime_Super 236899 2022-03-15
1.0 160691 5.590400e+07 Prime_Super 190559 2022-03-15
2.0 211160 5.818422e+07 Prime_Super 140090 2022-03-15
3.0 270745 7.271832e+07 Prime_Super 80505 2022-03-15
all_data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30 entries, 1 to 6
Data columns (total 6 columns):
delay 30 non-null float64
settled_users 30 non-null int64
due_amt 30 non-null float64
prime_tagging 30 non-null object
pending_users 30 non-null int64
cycle_end_date 30 non-null object
dtypes: float64(2), int64(2), object(2)
I want a new column all_data['delay'] + all_data['cycle_end_date']
but this throws TypeError: unsupported operand type(s) for +: 'int' and 'datetime.date'
How do I achieve this? Please help
pd.to_timedelta(all_data['delay']) + pd.to_datetime(all_data['cycle_end_date'].astype(str))
or the other one
results
1 2022-03-15 00:00:00.000000000
2 2022-03-15 00:00:00.000000001
3 2022-03-15 00:00:00.000000002
4 2022-03-15 00:00:00.000000003
5 2022-03-15 00:00:00.000000004
6 2022-03-15 00:00:00.000000005
1 2022-03-15 00:00:00.000000000
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

使用
to_timedelta
用unit='d'
表示天并将值添加到日期时间:或者:
Use
to_timedelta
withunit='d'
for days and add values to datetimes:Or: