如何将数据批量加载到 Apache Phoenix 5.1.2。使用 Apache Spark 3.2.1?

发布于 2025-01-15 14:40:01 字数 3037 浏览 2 评论 0原文

我正在尝试将 CSV 文件(每个 30 - 300 GB)批量加载到 Apache Phoenix 表中。我正在尝试使用 Apache Spark 插件 (https://phoenix.apache.org/phoenix_spark. html)。 但是,当我 Spark 提交我的代码时:

import sys

from pyspark.sql import SparkSession

def main():
    spark = SparkSession.builder.appName('From CSV to Phoenix Loader').getOrCreate()

    csv_name = sys.argv[1]
    table_name = sys.argv[2]

    csv_file = spark.read \
        .option("header", True) \
        .option("delimiter", ",") \
        .csv(f"hdfs://open1:9000/csv_files/{csv_name}")

    csv_file.printSchema()

    csv_file.write \
        .format("phoenix") \
        .mode("overwrite") \
        .option("table", table_name) \
        .option("zkUrl", "open1,open2,open3,open4,open5,open6,open7,open8,open9,open10,open11,open12:2181") \
        .save()

    spark.stop()

if __name__ == "__main__":
    main()

我收到错误

Traceback (most recent call last):
  File "load_from_csv_to_table.py", line 30, in <module>
    main()
  File "load_from_csv_to_table.py", line 19, in main
    csv_file.write \
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/pyspark/sql/readwriter.py", line 738, in save
    self._jwrite.save()
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/py4j/java_gateway.py", line 1321, in __call__
    return_value = get_return_value(
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/pyspark/sql/utils.py", line 111, in deco
    return f(*a, **kw)
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/py4j/protocol.py", line 326, in get_return_value
    raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling o48.save.
: java.lang.ClassNotFoundException: 
Failed to find data source: phoenix. Please find packages at
http://spark.apache.org/third-party-projects.html

My Spark-submit:

spark-submit --master yarn --deploy-mode cluster --jars /usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar,/usr/local/phoenix/phoenix-client-hbase-2.4-5.1.2.jar hdfs://open1:9000/apps/python/load_from_csv_to_table.py data.csv TABLE.TABLE

问题是,我不知道哪些 JAR 应该附加到 Spark 提交。当我查看 https://mvnrepository.com/artifact/org.apache 时。 phoenix/phoenix-spark,我没有看到 Apache Phoenix 5.1.2 的正确 JAR 版本。最后一个版本是 5.0.0,从 2018 年开始使用 HBase 2.0.0。如何使用 PySpark 3.2.1 将数据批量加载到 Apache Phoenix 5.1.2?我需要哪些 JAR?

我还定义了spark-defaults.conf:

spark.executor.extraClassPath=/usr/local/phoenix/phoenix-client-hbase-2.4-5.1.2.jar:/usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar
spark.driver.extraClassPath=/usr/local/phoenix/phoenix-client-hbase-2.4-5.1.2.jar:/usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar

但我相信JAR 不正确。

I am trying to bulk load CSV files (30 - 300 GB each) into Apache Phoenix tables. I am trying to do that with the Apache Spark plugin (https://phoenix.apache.org/phoenix_spark.html).
However, when I spark submit my code:

import sys

from pyspark.sql import SparkSession

def main():
    spark = SparkSession.builder.appName('From CSV to Phoenix Loader').getOrCreate()

    csv_name = sys.argv[1]
    table_name = sys.argv[2]

    csv_file = spark.read \
        .option("header", True) \
        .option("delimiter", ",") \
        .csv(f"hdfs://open1:9000/csv_files/{csv_name}")

    csv_file.printSchema()

    csv_file.write \
        .format("phoenix") \
        .mode("overwrite") \
        .option("table", table_name) \
        .option("zkUrl", "open1,open2,open3,open4,open5,open6,open7,open8,open9,open10,open11,open12:2181") \
        .save()

    spark.stop()

if __name__ == "__main__":
    main()

I get the error

Traceback (most recent call last):
  File "load_from_csv_to_table.py", line 30, in <module>
    main()
  File "load_from_csv_to_table.py", line 19, in main
    csv_file.write \
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/pyspark/sql/readwriter.py", line 738, in save
    self._jwrite.save()
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/py4j/java_gateway.py", line 1321, in __call__
    return_value = get_return_value(
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/pyspark/sql/utils.py", line 111, in deco
    return f(*a, **kw)
  File "/home/hadoopuser/.local/lib/python3.8/site-packages/py4j/protocol.py", line 326, in get_return_value
    raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling o48.save.
: java.lang.ClassNotFoundException: 
Failed to find data source: phoenix. Please find packages at
http://spark.apache.org/third-party-projects.html

My spark-submit:

spark-submit --master yarn --deploy-mode cluster --jars /usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar,/usr/local/phoenix/phoenix-client-hbase-2.4-5.1.2.jar hdfs://open1:9000/apps/python/load_from_csv_to_table.py data.csv TABLE.TABLE

The problem is, I do not know which JARs should attach to spark submit. When I look at https://mvnrepository.com/artifact/org.apache.phoenix/phoenix-spark, I do not see proper JAR version for Apache Phoenix 5.1.2. The last version is 5.0.0 with HBase 2.0.0 from 2018 year. How to bulk load data to Apache Phoenix 5.1.2 using PySpark 3.2.1? Which JARs do I need?

I have also defined spark-defaults.conf:

spark.executor.extraClassPath=/usr/local/phoenix/phoenix-client-hbase-2.4-5.1.2.jar:/usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar
spark.driver.extraClassPath=/usr/local/phoenix/phoenix-client-hbase-2.4-5.1.2.jar:/usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar

but I believe the JARs are not proper.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

彼岸花似海 2025-01-22 14:40:01

将其添加到 SparkSession。

spark = SparkSession.builder.appName('From CSV to Phoenix Loader').config("spark.driver.extraClassPath", "/usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar").getOrCreate()

Add this to SparkSession.

spark = SparkSession.builder.appName('From CSV to Phoenix Loader').config("spark.driver.extraClassPath", "/usr/local/phoenix/phoenix-spark-5.0.0-HBase-2.0.jar").getOrCreate()
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文