一个 ggplot 中的多个 RColorBrewer 调色板
我正在尝试将几个从较低色调到较暗色调的 RColorBrewer 调色板放入一个 ggplot 中。但到目前为止我还没有成功,我发现我只能使用一个。 我的数据集data
:
data <- wrapr::build_frame(
"ID" , "Treatment", "conc" , "relabs" |
1 , "A" , "NK" , 0.9552 |
2 , "A" , "NK" , 1.016 |
3 , "A" , "NK" , 1.069 |
4 , "A" , "NK" , 1.029 |
5 , "A" , "NK" , 0.9992 |
6 , "A" , "NK" , 1.036 |
7 , "A" , "NK" , 0.9867 |
8 , "A" , "NK" , 0.9082 |
9 , "A" , "100 µM" , 0.9549 |
10 , "A" , "100 µM" , 0.9016 |
11 , "A" , "100 µM" , 0.9058 |
12 , "A" , "100 µM" , 0.9029 |
13 , "A" , "100 µM" , 0.8595 |
14 , "A" , "100 µM" , 0.8643 |
15 , "A" , "100 µM" , 0.8687 |
16 , "A" , "100 µM" , 0.9319 |
17 , "A" , "10 µM" , 0.8128 |
18 , "A" , "10 µM" , 0.805 |
19 , "A" , "10 µM" , 0.7765 |
20 , "A" , "10 µM" , 0.8065 |
21 , "A" , "10 µM" , 0.8153 |
22 , "A" , "10 µM" , 0.8045 |
23 , "A" , "10 µM" , 0.7827 |
24 , "A" , "10 µM" , 0.8017 |
25 , "A" , "10 µM X" , 0.00229 |
26 , "A" , "10 µM X" , 0.0002057 |
27 , "A" , "10 µM X" , -0.01033 |
28 , "A" , "10 µM X" , -0.003444 |
29 , "A" , "10 µM X" , -0.01401 |
30 , "A" , "10 µM X" , -0.007581 |
31 , "A" , "10 µM X" , -0.01063 |
32 , "A" , "10 µM X" , -0.01012 |
33 , "A" , "100 µM Y", 0.005991 |
34 , "A" , "100 µM Y", 0.01108 |
35 , "A" , "100 µM Y", 0.003925 |
36 , "A" , "100 µM Y", 0.02162 |
37 , "A" , "100 µM Y", 0.02916 |
38 , "A" , "100 µM Y", 0.01679 |
39 , "A" , "100 µM Y", 0.03044 |
40 , "A" , "100 µM Y", 0.01541 |
41 , "B" , "NK" , 1.038 |
42 , "B" , "NK" , 0.9651 |
43 , "B" , "NK" , 0.9948 |
44 , "B" , "NK" , 0.9688 |
45 , "B" , "NK" , 0.9727 |
46 , "B" , "NK" , 0.9985 |
47 , "B" , "NK" , 1.035 |
48 , "B" , "NK" , 1.027 |
49 , "B" , "100 µM" , 0.3466 |
50 , "B" , "100 µM" , 0.3429 |
51 , "B" , "100 µM" , 0.3131 |
52 , "B" , "100 µM" , 0.3302 |
53 , "B" , "100 µM" , 0.3204 |
54 , "B" , "100 µM" , 0.3265 |
55 , "B" , "100 µM" , 0.3238 |
56 , "B" , "100 µM" , 0.3425 |
57 , "B" , "10 µM" , 0.7703 |
58 , "B" , "10 µM" , 0.7484 |
59 , "B" , "10 µM" , 0.76 |
60 , "B" , "10 µM" , 0.7915 |
61 , "B" , "10 µM" , 0.7664 |
62 , "B" , "10 µM" , 0.7407 |
63 , "B" , "10 µM" , 0.7726 |
64 , "B" , "10 µM" , 0.8036 |
65 , "B" , "10 µM X" , -0.003965 |
66 , "B" , "10 µM X" , -0.001291 |
67 , "B" , "10 µM X" , 0.002101 |
68 , "B" , "10 µM X" , -0.001548 |
69 , "B" , "10 µM X" , 0.004782 |
70 , "B" , "10 µM X" , -0.006738 |
71 , "B" , "10 µM X" , -0.008429 |
72 , "B" , "10 µM X" , -0.009955 |
73 , "B" , "100 µM Y", 0.01063 |
74 , "B" , "100 µM Y", 0.008139 |
75 , "B" , "100 µM Y", 0.01149 |
76 , "B" , "100 µM Y", 0.01182 |
77 , "B" , "100 µM Y", 0.01418 |
78 , "B" , "100 µM Y", 0.009189 |
79 , "B" , "100 µM Y", 0.007849 |
80 , "B" , "100 µM Y", 0.0171 |
81 , "C" , "NK" , 0.9342 |
82 , "C" , "NK" , 1.033 |
83 , "C" , "NK" , 0.9425 |
84 , "C" , "NK" , 1 |
85 , "C" , "NK" , 1.082 |
86 , "C" , "NK" , 0.9697 |
87 , "C" , "NK" , 1.069 |
88 , "C" , "NK" , 0.9684 |
89 , "C" , "100 µM" , 1.31 |
90 , "C" , "100 µM" , 1.25 |
91 , "C" , "100 µM" , 1.305 |
92 , "C" , "100 µM" , 1.28 |
93 , "C" , "100 µM" , 1.293 |
94 , "C" , "100 µM" , 1.256 |
95 , "C" , "100 µM" , 1.35 |
96 , "C" , "100 µM" , 1.219 |
97 , "C" , "10 µM" , 0.9741 |
98 , "C" , "10 µM" , 1.066 |
99 , "C" , "10 µM" , 0.9849 |
100 , "C" , "10 µM" , 0.9737 |
101 , "C" , "10 µM" , 0.9619 |
102 , "C" , "10 µM" , 0.989 |
103 , "C" , "10 µM" , 0.9821 |
104 , "C" , "10 µM" , 1.026 |
105 , "C" , "10 µM X" , 0.137 |
106 , "C" , "10 µM X" , 0.1283 |
107 , "C" , "10 µM X" , 0.09757 |
108 , "C" , "10 µM X" , 0.1522 |
109 , "C" , "10 µM X" , 0.1411 |
110 , "C" , "10 µM X" , 0.1377 |
111 , "C" , "10 µM X" , 0.1222 |
112 , "C" , "10 µM X" , 0.1209 |
113 , "C" , "100 µM Y", -0.00434 |
114 , "C" , "100 µM Y", -0.009208 |
115 , "C" , "100 µM Y", 0.01106 |
116 , "C" , "100 µM Y", -0.0005099 |
117 , "C" , "100 µM Y", 0.001142 |
118 , "C" , "100 µM Y", -0.002433 |
119 , "C" , "100 µM Y", 0.009931 |
120 , "C" , "100 µM Y", -0.01025 |
121 , "D" , "NK" , 1.046 |
122 , "D" , "NK" , 1.032 |
123 , "D" , "NK" , 0.9685 |
124 , "D" , "NK" , 0.9981 |
125 , "D" , "NK" , 1.005 |
126 , "D" , "NK" , 1.001 |
127 , "D" , "NK" , 0.9329 |
128 , "D" , "NK" , 1.017 |
129 , "D" , "100 µM" , 0.1012 |
130 , "D" , "100 µM" , 0.1177 |
131 , "D" , "100 µM" , 0.09581 |
132 , "D" , "100 µM" , 0.09372 |
133 , "D" , "100 µM" , 0.1143 |
134 , "D" , "100 µM" , 0.1019 |
135 , "D" , "100 µM" , 0.08676 |
136 , "D" , "100 µM" , 0.09314 |
137 , "D" , "10 µM" , 0.461 |
138 , "D" , "10 µM" , 0.4717 |
139 , "D" , "10 µM" , 0.4536 |
140 , "D" , "10 µM" , 0.487 |
141 , "D" , "10 µM" , 0.5137 |
142 , "D" , "10 µM" , 0.4936 |
143 , "D" , "10 µM" , 0.4574 |
144 , "D" , "10 µM" , 0.4904 |
145 , "D" , "10 µM X" , -0.02192 |
146 , "D" , "10 µM X" , -0.02502 |
147 , "D" , "10 µM X" , -0.0238 |
148 , "D" , "10 µM X" , -0.01711 |
149 , "D" , "10 µM X" , -0.02345 |
150 , "D" , "10 µM X" , -0.01186 |
151 , "D" , "10 µM X" , -0.004447 |
152 , "D" , "10 µM X" , -0.01209 |
153 , "D" , "100 µM Y", -0.01495 |
154 , "D" , "100 µM Y", -0.01741 |
155 , "D" , "100 µM Y", -0.0101 |
156 , "D" , "100 µM Y", -0.007783 |
157 , "D" , "100 µM Y", 0.004533 |
158 , "D" , "100 µM Y", -0.01373 |
159 , "D" , "100 µM Y", -0.02207 |
160 , "D" , "100 µM Y", -0.01263 |
161 , "E" , "NK" , 1.03 |
162 , "E" , "NK" , 0.9683 |
163 , "E" , "NK" , 0.9915 |
164 , "E" , "NK" , 0.9887 |
165 , "E" , "NK" , 1.019 |
166 , "E" , "NK" , 1.007 |
167 , "E" , "NK" , 0.9909 |
168 , "E" , "NK" , 1.004 |
169 , "E" , "100 µM" , 0.7583 |
170 , "E" , "100 µM" , 0.8541 |
171 , "E" , "100 µM" , 0.822 |
172 , "E" , "100 µM" , 0.8506 |
173 , "E" , "100 µM" , 0.8122 |
174 , "E" , "100 µM" , 0.8442 |
175 , "E" , "100 µM" , 0.831 |
176 , "E" , "100 µM" , 0.8153 |
177 , "E" , "10 µM" , 0.9815 |
178 , "E" , "10 µM" , 0.9623 |
179 , "E" , "10 µM" , 0.97 |
180 , "E" , "10 µM" , 0.9798 |
181 , "E" , "10 µM" , 0.967 |
182 , "E" , "10 µM" , 0.9825 |
183 , "E" , "10 µM" , 1.01 |
184 , "E" , "10 µM" , 0.9284 |
185 , "E" , "10 µM X" , 0.2576 |
186 , "E" , "10 µM X" , 0.2454 |
187 , "E" , "10 µM X" , 0.2467 |
188 , "E" , "10 µM X" , 0.2544 |
189 , "E" , "100 µM Y", 0.005576 |
190 , "E" , "100 µM Y", 0.01025 |
191 , "E" , "100 µM Y", 0.00863 |
192 , "E" , "100 µM Y", 0.004152 )
data_summary <-
data %>%
group_by(Treatment, conc) %>%
dplyr::summarize(relabs_avg = mean(relabs),
relabs_sd = sd(relabs),
relabs_median = median(relabs),
relabs_mad = mad(relabs),
relabs_q1 = quantile(relabs, probs = c(0.25)),
relabs_q3 = quantile(relabs, probs = c(0.75)),
size = n()) %>%
dplyr::mutate(across(where(is.numeric), ~round(., digits = 3)))
data_summary
alpha <- 0.05
data_full <-
data %>%
group_by(Treatment, conc) %>%
dplyr:: summarize(mean = mean(relabs),
median = median(relabs),
lower = mean(relabs) - qt(1- alpha/2, (n() - 1))*sd(relabs)/sqrt(n()),
upper = mean(relabs) + qt(1- alpha/2, (n() - 1))*sd(relabs)/sqrt(n()))
data_full
df<- merge(data_summary, data_full)
df
df_t_test <-
df_full %>%
group_by(Treatment, conc) %>%
do(tidy(t.test(.$relabs,
mu = 1 ,
alt = "less",
conf.level = 0.95, var.equal = FALSE)))
df_t_test
df_full<- merge(data, df)
df_full
df_full<- merge(data_full, df_t_test)
df_full
我当前使用的:
df_full$Label <- NA
df_full$Label[df_full$mean <0]<-'ND'
df_full$Label[df_full$p.value<0.001 & is.na(df_full$Label)]<-'***'
df_full$Label[df_full$p.value<0.01 & is.na(df_full$Label)]<-'**'
df_full$Label[df_full$p.value<0.05 & is.na(df_full$Label)]<-'*'
breaks_y =c(0, 0.25, 0.5, 0.75, 1, 1.25, 1.5)
df_full$Label <- NA
df_full$Label[df_full$mean <0]<-'ND'
df_full$Label[df_full$p.value<0.001 & is.na(df_full$Label)]<-'***'
df_full$Label[df_full$p.value<0.01 & is.na(df_full$Label)]<-'**'
df_full$Label[df_full$p.value<0.05 & is.na(df_full$Label)]<-'*'
plot <-
ggplot(df_full, aes(x = factor (Treatment, level = c("A","B", "C", "D", "E")), y = mean, fill = conc)) +
geom_col(color = "black", position = position_dodge(0.8), width = 0.7) +
geom_errorbar(aes(ymax = upper, ymin = lower), width = 0.27, position = position_dodge(0.8), color = "black", size = 0.7) +
geom_text(aes(label = Label, group = conc),size = 3, position = position_dodge(width =0.8), color = "black", vjust =-2) +
labs(x = "Treatment", y = "XXX", title = "YYY ", color = "ZZZ", fill = "ZZZ") +
scale_y_continuous(limits = c(0, 1.5), breaks = breaks_y) +
theme_bw() +
theme(axis.text = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face ="bold"),
axis.title.x = element_text(size = 12, face ="bold"))
plot + scale_fill_brewer(palette = "Blues")
有没有办法将调色板“蓝色”放在A Treatment
上,将“灰色”放在B Treatment上等等?或者某种我找不到的手动方法?
I am trying to put Several RColorBrewer Palettes that goes from lower tones to darker tones in one ggplot. But so far I've been unsuccessful and I've found that I can only use one.
My data set data
:
data <- wrapr::build_frame(
"ID" , "Treatment", "conc" , "relabs" |
1 , "A" , "NK" , 0.9552 |
2 , "A" , "NK" , 1.016 |
3 , "A" , "NK" , 1.069 |
4 , "A" , "NK" , 1.029 |
5 , "A" , "NK" , 0.9992 |
6 , "A" , "NK" , 1.036 |
7 , "A" , "NK" , 0.9867 |
8 , "A" , "NK" , 0.9082 |
9 , "A" , "100 µM" , 0.9549 |
10 , "A" , "100 µM" , 0.9016 |
11 , "A" , "100 µM" , 0.9058 |
12 , "A" , "100 µM" , 0.9029 |
13 , "A" , "100 µM" , 0.8595 |
14 , "A" , "100 µM" , 0.8643 |
15 , "A" , "100 µM" , 0.8687 |
16 , "A" , "100 µM" , 0.9319 |
17 , "A" , "10 µM" , 0.8128 |
18 , "A" , "10 µM" , 0.805 |
19 , "A" , "10 µM" , 0.7765 |
20 , "A" , "10 µM" , 0.8065 |
21 , "A" , "10 µM" , 0.8153 |
22 , "A" , "10 µM" , 0.8045 |
23 , "A" , "10 µM" , 0.7827 |
24 , "A" , "10 µM" , 0.8017 |
25 , "A" , "10 µM X" , 0.00229 |
26 , "A" , "10 µM X" , 0.0002057 |
27 , "A" , "10 µM X" , -0.01033 |
28 , "A" , "10 µM X" , -0.003444 |
29 , "A" , "10 µM X" , -0.01401 |
30 , "A" , "10 µM X" , -0.007581 |
31 , "A" , "10 µM X" , -0.01063 |
32 , "A" , "10 µM X" , -0.01012 |
33 , "A" , "100 µM Y", 0.005991 |
34 , "A" , "100 µM Y", 0.01108 |
35 , "A" , "100 µM Y", 0.003925 |
36 , "A" , "100 µM Y", 0.02162 |
37 , "A" , "100 µM Y", 0.02916 |
38 , "A" , "100 µM Y", 0.01679 |
39 , "A" , "100 µM Y", 0.03044 |
40 , "A" , "100 µM Y", 0.01541 |
41 , "B" , "NK" , 1.038 |
42 , "B" , "NK" , 0.9651 |
43 , "B" , "NK" , 0.9948 |
44 , "B" , "NK" , 0.9688 |
45 , "B" , "NK" , 0.9727 |
46 , "B" , "NK" , 0.9985 |
47 , "B" , "NK" , 1.035 |
48 , "B" , "NK" , 1.027 |
49 , "B" , "100 µM" , 0.3466 |
50 , "B" , "100 µM" , 0.3429 |
51 , "B" , "100 µM" , 0.3131 |
52 , "B" , "100 µM" , 0.3302 |
53 , "B" , "100 µM" , 0.3204 |
54 , "B" , "100 µM" , 0.3265 |
55 , "B" , "100 µM" , 0.3238 |
56 , "B" , "100 µM" , 0.3425 |
57 , "B" , "10 µM" , 0.7703 |
58 , "B" , "10 µM" , 0.7484 |
59 , "B" , "10 µM" , 0.76 |
60 , "B" , "10 µM" , 0.7915 |
61 , "B" , "10 µM" , 0.7664 |
62 , "B" , "10 µM" , 0.7407 |
63 , "B" , "10 µM" , 0.7726 |
64 , "B" , "10 µM" , 0.8036 |
65 , "B" , "10 µM X" , -0.003965 |
66 , "B" , "10 µM X" , -0.001291 |
67 , "B" , "10 µM X" , 0.002101 |
68 , "B" , "10 µM X" , -0.001548 |
69 , "B" , "10 µM X" , 0.004782 |
70 , "B" , "10 µM X" , -0.006738 |
71 , "B" , "10 µM X" , -0.008429 |
72 , "B" , "10 µM X" , -0.009955 |
73 , "B" , "100 µM Y", 0.01063 |
74 , "B" , "100 µM Y", 0.008139 |
75 , "B" , "100 µM Y", 0.01149 |
76 , "B" , "100 µM Y", 0.01182 |
77 , "B" , "100 µM Y", 0.01418 |
78 , "B" , "100 µM Y", 0.009189 |
79 , "B" , "100 µM Y", 0.007849 |
80 , "B" , "100 µM Y", 0.0171 |
81 , "C" , "NK" , 0.9342 |
82 , "C" , "NK" , 1.033 |
83 , "C" , "NK" , 0.9425 |
84 , "C" , "NK" , 1 |
85 , "C" , "NK" , 1.082 |
86 , "C" , "NK" , 0.9697 |
87 , "C" , "NK" , 1.069 |
88 , "C" , "NK" , 0.9684 |
89 , "C" , "100 µM" , 1.31 |
90 , "C" , "100 µM" , 1.25 |
91 , "C" , "100 µM" , 1.305 |
92 , "C" , "100 µM" , 1.28 |
93 , "C" , "100 µM" , 1.293 |
94 , "C" , "100 µM" , 1.256 |
95 , "C" , "100 µM" , 1.35 |
96 , "C" , "100 µM" , 1.219 |
97 , "C" , "10 µM" , 0.9741 |
98 , "C" , "10 µM" , 1.066 |
99 , "C" , "10 µM" , 0.9849 |
100 , "C" , "10 µM" , 0.9737 |
101 , "C" , "10 µM" , 0.9619 |
102 , "C" , "10 µM" , 0.989 |
103 , "C" , "10 µM" , 0.9821 |
104 , "C" , "10 µM" , 1.026 |
105 , "C" , "10 µM X" , 0.137 |
106 , "C" , "10 µM X" , 0.1283 |
107 , "C" , "10 µM X" , 0.09757 |
108 , "C" , "10 µM X" , 0.1522 |
109 , "C" , "10 µM X" , 0.1411 |
110 , "C" , "10 µM X" , 0.1377 |
111 , "C" , "10 µM X" , 0.1222 |
112 , "C" , "10 µM X" , 0.1209 |
113 , "C" , "100 µM Y", -0.00434 |
114 , "C" , "100 µM Y", -0.009208 |
115 , "C" , "100 µM Y", 0.01106 |
116 , "C" , "100 µM Y", -0.0005099 |
117 , "C" , "100 µM Y", 0.001142 |
118 , "C" , "100 µM Y", -0.002433 |
119 , "C" , "100 µM Y", 0.009931 |
120 , "C" , "100 µM Y", -0.01025 |
121 , "D" , "NK" , 1.046 |
122 , "D" , "NK" , 1.032 |
123 , "D" , "NK" , 0.9685 |
124 , "D" , "NK" , 0.9981 |
125 , "D" , "NK" , 1.005 |
126 , "D" , "NK" , 1.001 |
127 , "D" , "NK" , 0.9329 |
128 , "D" , "NK" , 1.017 |
129 , "D" , "100 µM" , 0.1012 |
130 , "D" , "100 µM" , 0.1177 |
131 , "D" , "100 µM" , 0.09581 |
132 , "D" , "100 µM" , 0.09372 |
133 , "D" , "100 µM" , 0.1143 |
134 , "D" , "100 µM" , 0.1019 |
135 , "D" , "100 µM" , 0.08676 |
136 , "D" , "100 µM" , 0.09314 |
137 , "D" , "10 µM" , 0.461 |
138 , "D" , "10 µM" , 0.4717 |
139 , "D" , "10 µM" , 0.4536 |
140 , "D" , "10 µM" , 0.487 |
141 , "D" , "10 µM" , 0.5137 |
142 , "D" , "10 µM" , 0.4936 |
143 , "D" , "10 µM" , 0.4574 |
144 , "D" , "10 µM" , 0.4904 |
145 , "D" , "10 µM X" , -0.02192 |
146 , "D" , "10 µM X" , -0.02502 |
147 , "D" , "10 µM X" , -0.0238 |
148 , "D" , "10 µM X" , -0.01711 |
149 , "D" , "10 µM X" , -0.02345 |
150 , "D" , "10 µM X" , -0.01186 |
151 , "D" , "10 µM X" , -0.004447 |
152 , "D" , "10 µM X" , -0.01209 |
153 , "D" , "100 µM Y", -0.01495 |
154 , "D" , "100 µM Y", -0.01741 |
155 , "D" , "100 µM Y", -0.0101 |
156 , "D" , "100 µM Y", -0.007783 |
157 , "D" , "100 µM Y", 0.004533 |
158 , "D" , "100 µM Y", -0.01373 |
159 , "D" , "100 µM Y", -0.02207 |
160 , "D" , "100 µM Y", -0.01263 |
161 , "E" , "NK" , 1.03 |
162 , "E" , "NK" , 0.9683 |
163 , "E" , "NK" , 0.9915 |
164 , "E" , "NK" , 0.9887 |
165 , "E" , "NK" , 1.019 |
166 , "E" , "NK" , 1.007 |
167 , "E" , "NK" , 0.9909 |
168 , "E" , "NK" , 1.004 |
169 , "E" , "100 µM" , 0.7583 |
170 , "E" , "100 µM" , 0.8541 |
171 , "E" , "100 µM" , 0.822 |
172 , "E" , "100 µM" , 0.8506 |
173 , "E" , "100 µM" , 0.8122 |
174 , "E" , "100 µM" , 0.8442 |
175 , "E" , "100 µM" , 0.831 |
176 , "E" , "100 µM" , 0.8153 |
177 , "E" , "10 µM" , 0.9815 |
178 , "E" , "10 µM" , 0.9623 |
179 , "E" , "10 µM" , 0.97 |
180 , "E" , "10 µM" , 0.9798 |
181 , "E" , "10 µM" , 0.967 |
182 , "E" , "10 µM" , 0.9825 |
183 , "E" , "10 µM" , 1.01 |
184 , "E" , "10 µM" , 0.9284 |
185 , "E" , "10 µM X" , 0.2576 |
186 , "E" , "10 µM X" , 0.2454 |
187 , "E" , "10 µM X" , 0.2467 |
188 , "E" , "10 µM X" , 0.2544 |
189 , "E" , "100 µM Y", 0.005576 |
190 , "E" , "100 µM Y", 0.01025 |
191 , "E" , "100 µM Y", 0.00863 |
192 , "E" , "100 µM Y", 0.004152 )
data_summary <-
data %>%
group_by(Treatment, conc) %>%
dplyr::summarize(relabs_avg = mean(relabs),
relabs_sd = sd(relabs),
relabs_median = median(relabs),
relabs_mad = mad(relabs),
relabs_q1 = quantile(relabs, probs = c(0.25)),
relabs_q3 = quantile(relabs, probs = c(0.75)),
size = n()) %>%
dplyr::mutate(across(where(is.numeric), ~round(., digits = 3)))
data_summary
alpha <- 0.05
data_full <-
data %>%
group_by(Treatment, conc) %>%
dplyr:: summarize(mean = mean(relabs),
median = median(relabs),
lower = mean(relabs) - qt(1- alpha/2, (n() - 1))*sd(relabs)/sqrt(n()),
upper = mean(relabs) + qt(1- alpha/2, (n() - 1))*sd(relabs)/sqrt(n()))
data_full
df<- merge(data_summary, data_full)
df
df_t_test <-
df_full %>%
group_by(Treatment, conc) %>%
do(tidy(t.test(.$relabs,
mu = 1 ,
alt = "less",
conf.level = 0.95, var.equal = FALSE)))
df_t_test
df_full<- merge(data, df)
df_full
df_full<- merge(data_full, df_t_test)
df_full
What I'm currently using:
df_full$Label <- NA
df_full$Label[df_full$mean <0]<-'ND'
df_full$Label[df_full$p.value<0.001 & is.na(df_full$Label)]<-'***'
df_full$Label[df_full$p.value<0.01 & is.na(df_full$Label)]<-'**'
df_full$Label[df_full$p.value<0.05 & is.na(df_full$Label)]<-'*'
breaks_y =c(0, 0.25, 0.5, 0.75, 1, 1.25, 1.5)
df_full$Label <- NA
df_full$Label[df_full$mean <0]<-'ND'
df_full$Label[df_full$p.value<0.001 & is.na(df_full$Label)]<-'***'
df_full$Label[df_full$p.value<0.01 & is.na(df_full$Label)]<-'**'
df_full$Label[df_full$p.value<0.05 & is.na(df_full$Label)]<-'*'
plot <-
ggplot(df_full, aes(x = factor (Treatment, level = c("A","B", "C", "D", "E")), y = mean, fill = conc)) +
geom_col(color = "black", position = position_dodge(0.8), width = 0.7) +
geom_errorbar(aes(ymax = upper, ymin = lower), width = 0.27, position = position_dodge(0.8), color = "black", size = 0.7) +
geom_text(aes(label = Label, group = conc),size = 3, position = position_dodge(width =0.8), color = "black", vjust =-2) +
labs(x = "Treatment", y = "XXX", title = "YYY ", color = "ZZZ", fill = "ZZZ") +
scale_y_continuous(limits = c(0, 1.5), breaks = breaks_y) +
theme_bw() +
theme(axis.text = element_text(size = 12, face = "bold"),
axis.title.y = element_text(size = 12, face ="bold"),
axis.title.x = element_text(size = 12, face ="bold"))
plot + scale_fill_brewer(palette = "Blues")
Is there a way to put color palette "Blues" on A Treatment
, "Greys" on B Treatment
and so on? Or some kind of manual way to do that I wasn't able to find?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您确实必须创建自己的组合 Brewer 调色板,并将其应用于两个分组变量(
conc
和Treatment
)的交互的当然,这里的问题是你的传奇现在很笨拙。然而,对于离散色标,很难解决这个问题。
实现类似效果的最简洁方法可能是根据处理进行填充,并使用 alpha 比例表示
conc
You would really have to create your own combined Brewer palette and apply it to the interaction of the two grouping variables (
conc
andTreatment
)Of course, the problem here is that your legend is now quite unwieldy. However, for a discrete color scale, it's difficult to get round this.
Possibly the cleanest way to achieve a similar effect is to fill according to treatment and use the alpha scale for
conc