在 Python 中拟合正弦数据
我正在尝试拟合实验数据
具有以下形式的函数:
A * np.sin(w*t + p) * np.exp(-g*t) + c
但是,拟合的曲线(下图中的线)不准确:
sstatic.net/XYS2H.png" rel="nofollow noreferrer">
如果我省略指数衰减部分,它会起作用我得到了一个不会衰退的窦功能:
我使用的函数来自 此线程:
def fit_sin(tt, yy):
'''Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc"'''
tt = np.array(tt)
yy = np.array(yy)
ff = np.fft.fftfreq(len(tt), (tt[1]-tt[0])) # assume uniform spacing
Fyy = abs(np.fft.fft(yy))
guess_freq = abs(ff[np.argmax(Fyy[1:])+1]) # excluding the zero frequency "peak", which is related to offset
guess_amp = np.std(yy) * 2.**0.5
guess_offset = np.mean(yy)
guess_phase = 0.
guess_damping = 0.5
guess = np.array([guess_amp, 2.*np.pi*guess_freq, guess_phase, guess_offset, guess_damping])
def sinfunc(t, A, w, p, g, c): return A * np.sin(w*t + p) * np.exp(-g*t) + c
popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess)
A, w, p, g, c = popt
f = w/(2.*np.pi)
fitfunc = lambda t: A * np.sin(w*t + p) * np.exp(-g*t) + c
return {"amp": A, "omega": w, "phase": p, "offset": c, "damping": g, "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": np.max(pcov), "rawres": (guess,popt,pcov)}
res = fit_sin(x, y)
x_fit = np.linspace(np.min(x), np.max(x), len(x))
plt.plot(x, y, label='Data', linewidth=line_width)
plt.plot(x_fit, res["fitfunc"](x_fit), label='Fit Curve', linewidth=line_width)
plt.show()
我不确定我是否错误地实现了代码或者如果该功能无法正确描述我的数据。我感谢你的帮助!
您可以从此处加载 txt 文件:
并像这样操作数据进行比较它与帖子:
file = 'A2320_Data.txt'
column = 17
data = np.loadtxt(file, float)
start = 270
end = 36000
time_scale = 3600
x = []
y = []
for i in range(len(data)):
if start < data[i][0] < end:
x.append(data[i][0]/time_scale)
y.append(data[i][column])
x = np.array(x)
y = np.array(y)
plt.plot(x, y, label='Pyro Oscillations', linewidth=line_width)
I am trying to fit experimental data
with a function of the form:
A * np.sin(w*t + p) * np.exp(-g*t) + c
However, the fitted curve (the line in the following image) is not accurate:
If I leave out the exponential decay part, it works and I get a sinus function that is not decaying:
The function that I use is from this thread:
def fit_sin(tt, yy):
'''Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc"'''
tt = np.array(tt)
yy = np.array(yy)
ff = np.fft.fftfreq(len(tt), (tt[1]-tt[0])) # assume uniform spacing
Fyy = abs(np.fft.fft(yy))
guess_freq = abs(ff[np.argmax(Fyy[1:])+1]) # excluding the zero frequency "peak", which is related to offset
guess_amp = np.std(yy) * 2.**0.5
guess_offset = np.mean(yy)
guess_phase = 0.
guess_damping = 0.5
guess = np.array([guess_amp, 2.*np.pi*guess_freq, guess_phase, guess_offset, guess_damping])
def sinfunc(t, A, w, p, g, c): return A * np.sin(w*t + p) * np.exp(-g*t) + c
popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess)
A, w, p, g, c = popt
f = w/(2.*np.pi)
fitfunc = lambda t: A * np.sin(w*t + p) * np.exp(-g*t) + c
return {"amp": A, "omega": w, "phase": p, "offset": c, "damping": g, "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": np.max(pcov), "rawres": (guess,popt,pcov)}
res = fit_sin(x, y)
x_fit = np.linspace(np.min(x), np.max(x), len(x))
plt.plot(x, y, label='Data', linewidth=line_width)
plt.plot(x_fit, res["fitfunc"](x_fit), label='Fit Curve', linewidth=line_width)
plt.show()
I am not sure if I implemented the code incorrectly or if the function is not able to describe my data correctly. I appreciate your help!
You can load the txt file from here:
and manipulate the data like this to compare it with the post:
file = 'A2320_Data.txt'
column = 17
data = np.loadtxt(file, float)
start = 270
end = 36000
time_scale = 3600
x = []
y = []
for i in range(len(data)):
if start < data[i][0] < end:
x.append(data[i][0]/time_scale)
y.append(data[i][column])
x = np.array(x)
y = np.array(y)
plt.plot(x, y, label='Pyro Oscillations', linewidth=line_width)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您的拟合曲线将如下所示
g
水平拉伸信封,c
垂直移动中心,w
确定振荡频率,A
垂直拉伸信封。因此它无法准确地对您拥有的数据进行建模。
此外,您将无法可靠地拟合
w
,为了确定振荡频率,最好尝试FFT
。当然,您可以通过添加更多参数来调整函数以使其看起来像您的数据,例如
但您仍然需要对频率进行很好的猜测。
Your fitted curve will look like this
g
stretches the envelope horizontally,c
moves the center vertically,w
determines the oscillation frequency,A
stretches the envelope vertically.So it can't accurately model the data you have.
Also, you will not be able to reliably fit
w
, to determine the oscilation frequency it is better to try anFFT
.Of course you could adjust the function to look like your data by adding a few more parameters, e.g.
But you will still have to give a good guess for the frequency.