第一个数据框有多个ID的贷款利率,其中一些是重复的,我想提取unquie id及其相应的最低利率

发布于 2025-01-15 12:17:26 字数 2256 浏览 3 评论 0原文

df=

ID  TYPE    Rate    CCY Size
0   12345   IN  0.25    USD 10,00,000.00
1   67890   IN  0.35    USD 10,00,000.00
2   23456   OUT 0.10    USD 10,00,000.00
3   97673   OUT -1.00   USD 10,00,000.00
4   87563   IN  -0.50   USD 10,00,000.00
5   364758  IN  0.25    USD 10,00,000.00
6   474759  OUT 0.35    USD 8,00,000.00
7   38484595    IN  0.10    USD 8,00,000.00
8   12345   IN  -1.00   USD 8,00,000.00
9   67890   OUT -0.50   USD 8,00,000.00
10  23456   IN  0.25    USD 8,00,000.00
11  97673   IN  0.35    USD 8,00,000.00
12  87563   OUT 0.10    USD 5,00,000.00
13  364758  OUT -1.00   USD 5,00,000.00
14  474759  OUT -0.50   USD 5,00,000.00
15  38484595    OUT 0.25    USD 5,00,000.00
16  12345   IN  0.35    USD 5,00,000.00
17  67890   IN  0.10    USD 5,00,000.00
18  23456   OUT -1.00   USD 5,00,000.00
19  97673   OUT -0.50   USD 5,00,000.00
20  87563   IN  0.25    USD 5,00,000.00
21  364758  IN  0.35    USD 5,00,000.00
22  474759  OUT 0.10    USD 5,00,000.00
23  38484595    IN  -1.00   USD 5,00,000.00
24  12345   IN  -0.50   USD 5,00,000.00
25  67890   OUT 0.25    USD 5,00,000.00
26  23456   IN  0.35    USD 5,00,000.00
27  97673   IN  0.10    USD 5,00,000.00
28  87563   OUT -1.00   USD 5,00,000.00
29  364758  OUT -0.50   USD 5,00,000.00
30  474759  OUT 0.25    USD 5,00,000.00
31  38484595    OUT 0.35    USD 5,00,000.00
32  12345   IN  0.10    USD 5,00,000.00
33  67890   IN  -1.00   USD 5,00,000.00
34  23456   OUT -0.50   USD 5,00,000.00
35  97673   OUT 0.25    USD 5,00,000.00
36  87563   IN  0.35    USD 5,00,000.00
37  364758  IN  0.10    USD 5,00,000.00
38  474759  OUT -1.00   USD 5,00,000.00
39  38484595    IN  -0.50   USD 5,00,000.00
40  12345   IN  0.25    USD 5,00,000.00
41  67890   OUT 0.35    USD 5,00,000.00
42  23456   IN  0.10    USD 5,00,000.00
43  97673   IN  -1.00   USD 5,00,000.00
44  87563   OUT -0.50   USD 5,00,000.00
45  364758  OUT 0.25    USD 5,00,000.00
46  474759  OUT 0.35    USD 5,00,000.00
47  38484595    OUT 0.10    USD 5,00,000.00

    ID  lowest rate highest rate
0   12345       
1   67890       
2   23456       
3   97673       
4   87563       
5   364758      
6   474759      
7   38484595    

我想从 df 数据中提取 df1 中的最低和最高速率以获得相应的 ID

df=

ID  TYPE    Rate    CCY Size
0   12345   IN  0.25    USD 10,00,000.00
1   67890   IN  0.35    USD 10,00,000.00
2   23456   OUT 0.10    USD 10,00,000.00
3   97673   OUT -1.00   USD 10,00,000.00
4   87563   IN  -0.50   USD 10,00,000.00
5   364758  IN  0.25    USD 10,00,000.00
6   474759  OUT 0.35    USD 8,00,000.00
7   38484595    IN  0.10    USD 8,00,000.00
8   12345   IN  -1.00   USD 8,00,000.00
9   67890   OUT -0.50   USD 8,00,000.00
10  23456   IN  0.25    USD 8,00,000.00
11  97673   IN  0.35    USD 8,00,000.00
12  87563   OUT 0.10    USD 5,00,000.00
13  364758  OUT -1.00   USD 5,00,000.00
14  474759  OUT -0.50   USD 5,00,000.00
15  38484595    OUT 0.25    USD 5,00,000.00
16  12345   IN  0.35    USD 5,00,000.00
17  67890   IN  0.10    USD 5,00,000.00
18  23456   OUT -1.00   USD 5,00,000.00
19  97673   OUT -0.50   USD 5,00,000.00
20  87563   IN  0.25    USD 5,00,000.00
21  364758  IN  0.35    USD 5,00,000.00
22  474759  OUT 0.10    USD 5,00,000.00
23  38484595    IN  -1.00   USD 5,00,000.00
24  12345   IN  -0.50   USD 5,00,000.00
25  67890   OUT 0.25    USD 5,00,000.00
26  23456   IN  0.35    USD 5,00,000.00
27  97673   IN  0.10    USD 5,00,000.00
28  87563   OUT -1.00   USD 5,00,000.00
29  364758  OUT -0.50   USD 5,00,000.00
30  474759  OUT 0.25    USD 5,00,000.00
31  38484595    OUT 0.35    USD 5,00,000.00
32  12345   IN  0.10    USD 5,00,000.00
33  67890   IN  -1.00   USD 5,00,000.00
34  23456   OUT -0.50   USD 5,00,000.00
35  97673   OUT 0.25    USD 5,00,000.00
36  87563   IN  0.35    USD 5,00,000.00
37  364758  IN  0.10    USD 5,00,000.00
38  474759  OUT -1.00   USD 5,00,000.00
39  38484595    IN  -0.50   USD 5,00,000.00
40  12345   IN  0.25    USD 5,00,000.00
41  67890   OUT 0.35    USD 5,00,000.00
42  23456   IN  0.10    USD 5,00,000.00
43  97673   IN  -1.00   USD 5,00,000.00
44  87563   OUT -0.50   USD 5,00,000.00
45  364758  OUT 0.25    USD 5,00,000.00
46  474759  OUT 0.35    USD 5,00,000.00
47  38484595    OUT 0.10    USD 5,00,000.00

    ID  lowest rate highest rate
0   12345       
1   67890       
2   23456       
3   97673       
4   87563       
5   364758      
6   474759      
7   38484595    

I want to pull lowest and highest rates in df1 from df data for their corresponding Ids

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

迷荒 2025-01-22 12:17:26

您可以尝试以下操作:

import numpy as np
import pandas as pd
df = pd.read_csv('./data.csv')
df = df.groupby('ID').agg({'Rate' : [np.min, np.max]}).Rate

在此处输入图像描述

You may try this:

import numpy as np
import pandas as pd
df = pd.read_csv('./data.csv')
df = df.groupby('ID').agg({'Rate' : [np.min, np.max]}).Rate

enter image description here

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文