在 MacOS(Monterey、Apple M1)上使用 H2O(来自 Python 3.9.10)和 XGBoost 后端时出错
我目前正在尝试从 Python 使用 H2O,并且在 Mac 操作系统上使用 XGBoost 时遇到了一些问题。 H2O 似乎在任何地方都找不到它。
更准确地说,下一个简单的片段
import pandas as pd
import h2o
data = [['2015-01-01', '2490.925806' , '-0.41'],
['2015-01-02', '2412.623113' , '-0.48'],
['2015-01-03', '2365.611276' , '-0.55']]
df = pd.DataFrame(data, columns=["time", "base", "target"]).set_index("time", drop=True)
h2o.init(nthreads=-1)
estimator = h2o.estimators.H2OXGBoostEstimator()
training_frame = h2o.H2OFrame(df)
estimator.train(["base"], "target", training_frame)
给了我错误:
H2OResponseError: Server error water.exceptions.H2ONotFoundArgumentException:
Error: POST /3/ModelBuilders/xgboost not found
Request: POST /3/ModelBuilders/xgboost
data: {'training_frame': 'Key_Frame__upload_893634781f588299bbd20d51c98d43a9.hex', 'nfolds': '0', 'keep_cross_validation_models': 'True', 'keep_cross_validation_predictions': 'False', 'keep_cross_validation_fold_assignment': 'False', 'score_each_iteration': 'False', 'fold_assignment': 'auto', 'response_column': 'target', 'ignore_const_cols': 'True', 'stopping_rounds': '0', 'stopping_metric': 'auto', 'stopping_tolerance': '0.001', 'max_runtime_secs': '0.0', 'seed': '-1', 'distribution': 'auto', 'tweedie_power': '1.5', 'categorical_encoding': 'auto', 'quiet_mode': 'True', 'ntrees': '50', 'max_depth': '6', 'min_rows': '1.0', 'min_child_weight': '1.0', 'learn_rate': '0.3', 'eta': '0.3', 'sample_rate': '1.0', 'subsample': '1.0', 'col_sample_rate': '1.0', 'colsample_bylevel': '1.0', 'col_sample_rate_per_tree': '1.0', 'colsample_bytree': '1.0', 'colsample_bynode': '1.0', 'max_abs_leafnode_pred': '0.0', 'max_delta_step': '0.0', 'score_tree_interval': '0', 'min_split_improvement': '0.0', 'gamma': '0.0', 'nthread': '-1', 'build_tree_one_node': 'False', 'calibrate_model': 'False', 'max_bins': '256', 'max_leaves': '0', 'sample_type': 'uniform', 'normalize_type': 'tree', 'rate_drop': '0.0', 'one_drop': 'False', 'skip_drop': '0.0', 'tree_method': 'auto', 'grow_policy': 'depthwise', 'booster': 'gbtree', 'reg_lambda': '1.0', 'reg_alpha': '0.0', 'dmatrix_type': 'auto', 'backend': 'auto', 'gainslift_bins': '-1', 'auc_type': 'auto', 'scale_pos_weight': '1.0'}
有关我的发行版的更多信息:
- 操作系统:Monterey 12.3
- 处理器:Apple M1
- Python:3.9.10
- H2O:3.36.0.3
我怀疑Apple M1是错误的原因,但是真的是这样吗?
I am currently trying to use H2O from Python, and I encounter some problems on my Mac OS with XGBoost.
It seems like H2O does not find it anywhere.
More precisely, the next simple snippet
import pandas as pd
import h2o
data = [['2015-01-01', '2490.925806' , '-0.41'],
['2015-01-02', '2412.623113' , '-0.48'],
['2015-01-03', '2365.611276' , '-0.55']]
df = pd.DataFrame(data, columns=["time", "base", "target"]).set_index("time", drop=True)
h2o.init(nthreads=-1)
estimator = h2o.estimators.H2OXGBoostEstimator()
training_frame = h2o.H2OFrame(df)
estimator.train(["base"], "target", training_frame)
gives me the error :
H2OResponseError: Server error water.exceptions.H2ONotFoundArgumentException:
Error: POST /3/ModelBuilders/xgboost not found
Request: POST /3/ModelBuilders/xgboost
data: {'training_frame': 'Key_Frame__upload_893634781f588299bbd20d51c98d43a9.hex', 'nfolds': '0', 'keep_cross_validation_models': 'True', 'keep_cross_validation_predictions': 'False', 'keep_cross_validation_fold_assignment': 'False', 'score_each_iteration': 'False', 'fold_assignment': 'auto', 'response_column': 'target', 'ignore_const_cols': 'True', 'stopping_rounds': '0', 'stopping_metric': 'auto', 'stopping_tolerance': '0.001', 'max_runtime_secs': '0.0', 'seed': '-1', 'distribution': 'auto', 'tweedie_power': '1.5', 'categorical_encoding': 'auto', 'quiet_mode': 'True', 'ntrees': '50', 'max_depth': '6', 'min_rows': '1.0', 'min_child_weight': '1.0', 'learn_rate': '0.3', 'eta': '0.3', 'sample_rate': '1.0', 'subsample': '1.0', 'col_sample_rate': '1.0', 'colsample_bylevel': '1.0', 'col_sample_rate_per_tree': '1.0', 'colsample_bytree': '1.0', 'colsample_bynode': '1.0', 'max_abs_leafnode_pred': '0.0', 'max_delta_step': '0.0', 'score_tree_interval': '0', 'min_split_improvement': '0.0', 'gamma': '0.0', 'nthread': '-1', 'build_tree_one_node': 'False', 'calibrate_model': 'False', 'max_bins': '256', 'max_leaves': '0', 'sample_type': 'uniform', 'normalize_type': 'tree', 'rate_drop': '0.0', 'one_drop': 'False', 'skip_drop': '0.0', 'tree_method': 'auto', 'grow_policy': 'depthwise', 'booster': 'gbtree', 'reg_lambda': '1.0', 'reg_alpha': '0.0', 'dmatrix_type': 'auto', 'backend': 'auto', 'gainslift_bins': '-1', 'auc_type': 'auto', 'scale_pos_weight': '1.0'}
For more information about my distribution:
- OS: Monterey 12.3
- Processor: Apple M1
- Python: 3.9.10
- H2O: 3.36.0.3
I suspect Apple M1 to be the cause of the error, but is that really the case ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
抱歉,Apple M1 处理器尚不支持 XGBoost。
https://h2oai.atlassian.net/browse/PUBDEV-8482
I am sorry, the XGBoost is not supported on Apple M1 processor yet.
https://h2oai.atlassian.net/browse/PUBDEV-8482