使用 PLSA 的 NLP(主题建模)
我试图理解PLSA(概率潜在语义分析),进行文本建模(NLP),我在每篇文章中遇到的问题,它只是数学(概率),没有任何半算法或任何东西帮助您理解这一点,有什么链接可以让我理解 PLSA 吗?
Im trying to understand PLSA (probabilistic latent semantic analysis), to do text modeling (NLP), the problem in every article i red, it's only maths (probabilities), without any semi-algorithme or anything to help you understand that, is there any link where i can understand PLSA please ?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
PLSA 中的 P 代表概率,因此恐怕您可能找不到任何不讨论这些的文章。该模型本身是一个概率模型,需要一些关于关节、条件、独立性等的知识。我会推荐 https://medium.com /nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05 我发现是最好的在线资源。有一些数学知识,但大部分都解释得很好。关于 PLSA 算法 - 我不确定。它不经常使用,人们几乎总是更喜欢 LDA。我可以在这里找到使用 EM 解决 PLSA 的 GitHub 实现:https://github.com/laserwave/plsa。
The P in PLSA stands for probablistic and hence I am afraid you may not find any article that does not talk about these. The model itself is a probablistic model and some knowledge of joints, conditionals, independence etc are expected. I would recommend https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05 which I found to be the best online resource. There is a bit of Math but most of it is explained well. About PLSA algorithm - I am not sure. It is not used that often and one almost always prefers LDA. I could find a GitHub implementation of solving PLSA using EM here: https://github.com/laserwave/plsa.