为什么色调不一致会导致A*中重复节点的扩展?
我知道我们需要遵循三角不等式以获得一致的启发式即,
h(n)< c(n,a,n')+ h(n')
我对为什么可能导致重复节点扩展的理解是,假设我们发现从节点“n”到目标节点的最短路径,并假设我们发现另一个到节点“n”的路径覆盖相同的节点,但到目标的直线距离较短,那么我们将必须遍历相同的节点两次(至少),首先到达节点 n,然后再次到达相同的节点遵循最短路径。所以这就是为什么同一个节点可能会被再次访问。这是正确的还是我的理解有问题?
谢谢你!
I am aware that we need to follow the triangle inequality for consistent heuristic I.e,
h(n)< c(n,a,n')+ h(n')
My understanding of why it might cause repeated nodes to be expanded is that , suppose we discover a shortest path from node 'n' to goal node , and suppose we discover another path to node 'n' that covers the same node , but has a shorter straight line distance to goal, then we will have to traverse the same node twice (atleast), first to reach the node n and then to reach the same node again to follow the shortest path . So this is why the same node may be visited again . Is it right or is there some flaw in my understanding?
Thank you!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论