GEV 不合适
我有每年的最大值,我尝试对其进行 GEV 分析。然而,当尝试时,pdf 根本不适合数据。我尝试最小化类似问题中提出的建议,但这效果不佳。代码如下:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genextreme
yearly_max = [3465, 3461, 3318, 3304, 3211, 3307, 3224, 3440, 3317, 3393, 3360, 3695,
3265, 3328, 3326, 3272, 3479, 3275, 3355, 3316, 3324, 3411, 3298, 3424,
3311, 3387, 3374, 3320, 3307, 3343, 3440]
shape_gev, location_gev, scale_gev = genextreme.fit(yearly_max)
input_WL = np.linspace(2000, 6000, 1000)
pdf_gev = genextreme.pdf(input_WL, shape_gev, loc=location_gev, scale=scale_gev)
plt.hist(yearly_max, bins=40, range=(3000, 4000), density = True, label="normed occurence")
plt.plot(input_WL, pdf_gev, linewidth=4, label='pdf')
有人可以帮我解决这个问题吗?
I have yearly maxima for which I tried doing a GEV-analysis. However, when trying, the pdf does not fit the data at all. I tried minimizing like proposed at similar questions but this did not work as well. The code can be found below:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genextreme
yearly_max = [3465, 3461, 3318, 3304, 3211, 3307, 3224, 3440, 3317, 3393, 3360, 3695,
3265, 3328, 3326, 3272, 3479, 3275, 3355, 3316, 3324, 3411, 3298, 3424,
3311, 3387, 3374, 3320, 3307, 3343, 3440]
shape_gev, location_gev, scale_gev = genextreme.fit(yearly_max)
input_WL = np.linspace(2000, 6000, 1000)
pdf_gev = genextreme.pdf(input_WL, shape_gev, loc=location_gev, scale=scale_gev)
plt.hist(yearly_max, bins=40, range=(3000, 4000), density = True, label="normed occurence")
plt.plot(input_WL, pdf_gev, linewidth=4, label='pdf')
Can someone please help me solving this problem?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论