使用 Tweepy python 进行主题标签搜索
下面的代码是搜索关键字并将其存储在 csv 文件中,文件名将是我搜索的任何主题标签。如何在 google colab 中打开 csv 文件(使用主题标签保存的文件)。 (Python)
def search_for_hashtags(consumer_key, consumer_secret, access_token, access_token_secret, hashtag_phrase):
#create an authorization for accessing Twitter (aka tell the program we have permission to do what we're doing)
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
#initialize Tweepy API
api = tweepy.API(auth)
#make the name of the spreadsheet we will write to
#it will be named whatever we search
fname = '_'.join(re.findall(r"#(\w+)", hashtag_phrase))
#open the spreadsheet we will write to
with open('%s.csv' % (fname), 'w', encoding='utf-8') as file:
w = csv.writer(file)
#write header row to spreadsheet
w.writerow(['timestamp', 'tweet_text', 'username', 'all_hashtags', 'followers_count'])
#for each tweet matching our hashtags, write relevant info to the spreadsheet
#max we can pull is 500,000 tweets a month; I have it set to 100
for tweet in tweepy.Cursor(api.search, q=hashtag_phrase+' -filter:retweets', \
lang="en", tweet_mode='extended').items(100):
w.writerow([tweet.created_at, tweet.full_text.replace('\n',' ').encode('utf-8'), tweet.user.screen_name.encode('utf-8'), [e['text'] for e in tweet._json['entities']['hashtags']], tweet.user.followers_count])
the code below is to search keywords and store it in csv file, the file name will be whatever hashtag I search. How will I open the csv file (the one saved with the hashtag) in google colab. (python)
def search_for_hashtags(consumer_key, consumer_secret, access_token, access_token_secret, hashtag_phrase):
#create an authorization for accessing Twitter (aka tell the program we have permission to do what we're doing)
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
#initialize Tweepy API
api = tweepy.API(auth)
#make the name of the spreadsheet we will write to
#it will be named whatever we search
fname = '_'.join(re.findall(r"#(\w+)", hashtag_phrase))
#open the spreadsheet we will write to
with open('%s.csv' % (fname), 'w', encoding='utf-8') as file:
w = csv.writer(file)
#write header row to spreadsheet
w.writerow(['timestamp', 'tweet_text', 'username', 'all_hashtags', 'followers_count'])
#for each tweet matching our hashtags, write relevant info to the spreadsheet
#max we can pull is 500,000 tweets a month; I have it set to 100
for tweet in tweepy.Cursor(api.search, q=hashtag_phrase+' -filter:retweets', \
lang="en", tweet_mode='extended').items(100):
w.writerow([tweet.created_at, tweet.full_text.replace('\n',' ').encode('utf-8'), tweet.user.screen_name.encode('utf-8'), [e['text'] for e in tweet._json['entities']['hashtags']], tweet.user.followers_count])
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
根据我的理解,您只需上传该 csv(如果尚未在协作中),然后使用
pd.read_csv('your_file_name.csv')
打开它Based on what I understood, you can simply upload that csv (if that is not on collab already) and then open it with
pd.read_csv('your_file_name.csv')