大数据集的 pandas 中的 drop_duplicates
我是熊猫新手,很抱歉我的天真。
我有两个数据框。 一个是out.hdf:
999999 2014 1 2 15 19 45.19 14.095 -91.528 69.7 4.5 0.0 0.0 0.0 603879074
999999 2014 1 2 23 53 57.58 16.128 -97.815 23.2 4.8 0.0 0.0 0.0 603879292
999999 2014 1 9 12 27 10.98 13.265 -89.835 55.0 4.5 0.0 0.0 0.0 603947030
999999 2014 1 9 20 57 44.88 23.273 -80.778 15.0 5.1 0.0 0.0 0.0 603947340
另一个是out.res(第一列是电台名称):
061Z 56.72 0.0 P 603879074
061Z 29.92 0.0 P 603879074
0614 46.24 0.0 P 603879292
109C 87.51 0.0 P 603947030
113A 66.93 0.0 P 603947030
113A 26.93 0.0 P 603947030
121A 31.49 0.0 P 603947340
两个数据框中的最后一列都是ID。 我想创建一个新的数据帧,以这种方式将两个数据帧中的相同 ID 放在一起(首先从 hdf 读取一行,然后将 res 中具有相同 ID 的行放在其下方,但不将 ID 保留在 res 中) 。
新数据帧:
"999999 2014 1 2 15 19 45.19 14.095 -91.528 69.7 4.5 0.0 0.0 0.0 603879074"
061Z 56.72 0.0 P
061Z 29.92 0.0 P
"999999 2014 1 2 23 53 57.58 16.128 -97.815 23.2 4.8 0.0 0.0 0.0 603879292"
0614 46.24 0.0 P
"999999 2014 1 9 12 27 10.98 13.265 -89.835 55.0 4.5 0.0 0.0 0.0 603947030"
109C 87.51 0.0 P
113A 66.93 0.0 P
113A 26.93 0.0 P
"999999 2014 1 9 20 57 44.88 23.273 -80.778 15.0 5.1 0.0 0.0 0.0 603947340"
121A 31.49 0.0 P
我执行此操作的代码是:
import csv
import pandas as pd
import numpy as np
path= './'
hdf = pd.read_csv(path + 'out.hdf', delimiter = '\t', header = None)
res = pd.read_csv(path + 'out.res', delimiter = '\t', header = None)
###creating input to the format of ph2dt-jp/ph
with open('./new_df', 'w', encoding='UTF8') as f:
writer = csv.writer(f, delimiter='\t')
i=0
with open('./out.hdf', 'r') as a_file:
for line in a_file:
liney = line.strip()
writer.writerow(np.array([liney]))
print(liney)
j=0
with open('./out.res', 'r') as a_file:
for line in a_file:
if res.iloc[j, 4] == hdf.iloc[i, 14]:
strng = res.iloc[j, [0, 1, 2, 3]]
print(strng)
writer.writerow(np.array(strng))
j+=1
i+=1
目标是在第三个数据帧中仅保留唯一的站点。在创建第三个数据帧之前,我使用这些命令来保留唯一的站点:
res.drop_duplicates([0], keep = 'last', inplace = True)
并且
res.groupby([0], as_index = False).last()
它工作正常。问题是对于包含数千行的大型数据集,使用这些命令会导致第三个数据帧中省略 res 文件的某些行。 您能否让我知道我应该做什么才能为大型数据集提供相同的结果? 我快要疯了,感谢您提前抽出时间并提供帮助。
I am new to pandas so sorry for naiveté.
I have two dataframe.
One is out.hdf:
999999 2014 1 2 15 19 45.19 14.095 -91.528 69.7 4.5 0.0 0.0 0.0 603879074
999999 2014 1 2 23 53 57.58 16.128 -97.815 23.2 4.8 0.0 0.0 0.0 603879292
999999 2014 1 9 12 27 10.98 13.265 -89.835 55.0 4.5 0.0 0.0 0.0 603947030
999999 2014 1 9 20 57 44.88 23.273 -80.778 15.0 5.1 0.0 0.0 0.0 603947340
and another one is out.res (the first column is station name):
061Z 56.72 0.0 P 603879074
061Z 29.92 0.0 P 603879074
0614 46.24 0.0 P 603879292
109C 87.51 0.0 P 603947030
113A 66.93 0.0 P 603947030
113A 26.93 0.0 P 603947030
121A 31.49 0.0 P 603947340
The last columns in both dataframes are ID.
I want to creat a new dataframe which puts the same IDs from two dataframes together in this way (first reads a line from hdf, then puts the lines from res with the same ID beneath it, but doesn't keep the ID in res).
The new dataframe:
"999999 2014 1 2 15 19 45.19 14.095 -91.528 69.7 4.5 0.0 0.0 0.0 603879074"
061Z 56.72 0.0 P
061Z 29.92 0.0 P
"999999 2014 1 2 23 53 57.58 16.128 -97.815 23.2 4.8 0.0 0.0 0.0 603879292"
0614 46.24 0.0 P
"999999 2014 1 9 12 27 10.98 13.265 -89.835 55.0 4.5 0.0 0.0 0.0 603947030"
109C 87.51 0.0 P
113A 66.93 0.0 P
113A 26.93 0.0 P
"999999 2014 1 9 20 57 44.88 23.273 -80.778 15.0 5.1 0.0 0.0 0.0 603947340"
121A 31.49 0.0 P
My code to do this is:
import csv
import pandas as pd
import numpy as np
path= './'
hdf = pd.read_csv(path + 'out.hdf', delimiter = '\t', header = None)
res = pd.read_csv(path + 'out.res', delimiter = '\t', header = None)
###creating input to the format of ph2dt-jp/ph
with open('./new_df', 'w', encoding='UTF8') as f:
writer = csv.writer(f, delimiter='\t')
i=0
with open('./out.hdf', 'r') as a_file:
for line in a_file:
liney = line.strip()
writer.writerow(np.array([liney]))
print(liney)
j=0
with open('./out.res', 'r') as a_file:
for line in a_file:
if res.iloc[j, 4] == hdf.iloc[i, 14]:
strng = res.iloc[j, [0, 1, 2, 3]]
print(strng)
writer.writerow(np.array(strng))
j+=1
i+=1
The goal is to keep just unique stations in the 3rd dataframe. I used these commands for res to keep unique stations before creating the 3rd dataframe:
res.drop_duplicates([0], keep = 'last', inplace = True)
and
res.groupby([0], as_index = False).last()
and it works fine. The problem is for a large data set, including thousands of lines, using these commands causes some lines of res file to be omitted in the 3rd dataframe.
Could you please let me know what I should do to give the same result for a large dataset?
I am going crazy and thanks for your time and help in advance.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我发现了这个问题,并希望它对将来的其他人有帮助。
在大型数据集中,重复的站点重复多次但不连续。
Drop_duplicates()
仅保留其中之一。然而,我只想删除连续的电台,而不是全部。我使用
shift
完成了此操作:I found the problem and hope it is helpful for others in the future.
In a large data set, the duplicated stations were repeating many times but not consecutively.
Drop_duplicates()
were keeping just one of them.However, I wanted to drop just consecutive stations not all of them. And I've done this using
shift
: