多台机器上的 Tensorflow 联合学习
我正在尝试使用 Tensorflow Federated 来实现联邦学习。我无法在客户端计算机上现有的数据集上运行张量流模型。接下来的过程如下。
- 我有一台服务器计算机,用于托管用于联合学习的数据集。我已经在服务器中创建了模型和 TFF 学习平均过程。
- 远程执行器服务在客户端计算机(GCP VM)上运行。服务器广播工作正常,模型训练正在客户端计算机上执行。
- 但是模型训练的数据通过广播过程作为参数传递给客户端机器。有没有办法使用客户端计算机上托管的数据来训练模型?
I am trying to implement federated learning with Tensorflow Federated. I am not able to run the tensorflow model on the dataset existing on the client machine. The process followed is as below.
- I have one server machine which host the dataset to be used for federated learning. I have created the model and TFF learning average process in the server.
- The remote executor service is running on a client machine(GCP VM). The server broadcast is working fine and the model training is executing on the client machine.
- But the data for the model training is passed as a parameter to client machine with the broadcast process. Is there a way to train the model with the data hosted on the client machine?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论