ValueError:绘制散点图时 RGBA 值应在 0-1 范围内
我试图生成一个散点图来显示 PCA 变换之前和之后的数据,类似于 教程。
为此,我运行以下代码:
fig, axes = plt.subplots(1,2)
axes[0].scatter(X.iloc[:,0], X.iloc[:,1], c=y)
axes[0].set_xlabel('x1')
axes[0].set_ylabel('x2')
axes[0].set_title('Before PCA')
axes[1].scatter(X_new[:,0], X_new[:,1], c=y)
axes[1].set_xlabel('PC1')
axes[1].set_ylabel('PC2')
axes[1].set_title('After PCA')
plt.show()
这导致出现此错误:
ValueError: RGBA values should be within 0-1 range
X 是预处理的特征矩阵,其中包含 196 个样本和 59 个特征。而 y 是因变量,包含两个类 [0, 1]。
以下是完整的错误消息:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-109-2c4f74ddce3f> in <module>
1 fig, axes = plt.subplots(1,2)
----> 2 axes[0].scatter(X.iloc[:,0], X.iloc[:,1], c=y)
3 axes[0].set_xlabel('x1')
4 axes[0].set_ylabel('x2')
5 axes[0].set_title('Before PCA')
~/anaconda3/lib/python3.7/site-packages/matplotlib/__init__.py in inner(ax, data, *args, **kwargs)
1597 def inner(ax, *args, data=None, **kwargs):
1598 if data is None:
-> 1599 return func(ax, *map(sanitize_sequence, args), **kwargs)
1600
1601 bound = new_sig.bind(ax, *args, **kwargs)
~/anaconda3/lib/python3.7/site-packages/matplotlib/axes/_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, plotnonfinite, **kwargs)
4495 offsets=offsets,
4496 transOffset=kwargs.pop('transform', self.transData),
-> 4497 alpha=alpha
4498 )
4499 collection.set_transform(mtransforms.IdentityTransform())
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in __init__(self, paths, sizes, **kwargs)
881 """
882
--> 883 Collection.__init__(self, **kwargs)
884 self.set_paths(paths)
885 self.set_sizes(sizes)
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in __init__(self, edgecolors, facecolors, linewidths, linestyles, capstyle, joinstyle, antialiaseds, offsets, transOffset, norm, cmap, pickradius, hatch, urls, offset_position, zorder, **kwargs)
125
126 self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color'])
--> 127 self.set_facecolor(facecolors)
128 self.set_edgecolor(edgecolors)
129 self.set_linewidth(linewidths)
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in set_facecolor(self, c)
676 """
677 self._original_facecolor = c
--> 678 self._set_facecolor(c)
679
680 def get_facecolor(self):
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in _set_facecolor(self, c)
659 except AttributeError:
660 pass
--> 661 self._facecolors = mcolors.to_rgba_array(c, self._alpha)
662 self.stale = True
663
~/anaconda3/lib/python3.7/site-packages/matplotlib/colors.py in to_rgba_array(c, alpha)
277 result[mask] = 0
278 if np.any((result < 0) | (result > 1)):
--> 279 raise ValueError("RGBA values should be within 0-1 range")
280 return result
281 # Handle single values.
ValueError: RGBA values should be within 0-1 range
我不确定导致此错误的原因,并希望能帮助您解决此问题。谢谢!
I am attempting to generate a scatter plot to show data before and after the PCA transform, similar to this tutorial.
To do this, I am running the following code:
fig, axes = plt.subplots(1,2)
axes[0].scatter(X.iloc[:,0], X.iloc[:,1], c=y)
axes[0].set_xlabel('x1')
axes[0].set_ylabel('x2')
axes[0].set_title('Before PCA')
axes[1].scatter(X_new[:,0], X_new[:,1], c=y)
axes[1].set_xlabel('PC1')
axes[1].set_ylabel('PC2')
axes[1].set_title('After PCA')
plt.show()
Which is causing this error to appear:
ValueError: RGBA values should be within 0-1 range
X is the preprocessed matrix of features, which contains 196 samples and 59 features. Whereas y is the dependent variable and contains two classes [0, 1].
Here is the full error message:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-109-2c4f74ddce3f> in <module>
1 fig, axes = plt.subplots(1,2)
----> 2 axes[0].scatter(X.iloc[:,0], X.iloc[:,1], c=y)
3 axes[0].set_xlabel('x1')
4 axes[0].set_ylabel('x2')
5 axes[0].set_title('Before PCA')
~/anaconda3/lib/python3.7/site-packages/matplotlib/__init__.py in inner(ax, data, *args, **kwargs)
1597 def inner(ax, *args, data=None, **kwargs):
1598 if data is None:
-> 1599 return func(ax, *map(sanitize_sequence, args), **kwargs)
1600
1601 bound = new_sig.bind(ax, *args, **kwargs)
~/anaconda3/lib/python3.7/site-packages/matplotlib/axes/_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, plotnonfinite, **kwargs)
4495 offsets=offsets,
4496 transOffset=kwargs.pop('transform', self.transData),
-> 4497 alpha=alpha
4498 )
4499 collection.set_transform(mtransforms.IdentityTransform())
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in __init__(self, paths, sizes, **kwargs)
881 """
882
--> 883 Collection.__init__(self, **kwargs)
884 self.set_paths(paths)
885 self.set_sizes(sizes)
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in __init__(self, edgecolors, facecolors, linewidths, linestyles, capstyle, joinstyle, antialiaseds, offsets, transOffset, norm, cmap, pickradius, hatch, urls, offset_position, zorder, **kwargs)
125
126 self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color'])
--> 127 self.set_facecolor(facecolors)
128 self.set_edgecolor(edgecolors)
129 self.set_linewidth(linewidths)
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in set_facecolor(self, c)
676 """
677 self._original_facecolor = c
--> 678 self._set_facecolor(c)
679
680 def get_facecolor(self):
~/anaconda3/lib/python3.7/site-packages/matplotlib/collections.py in _set_facecolor(self, c)
659 except AttributeError:
660 pass
--> 661 self._facecolors = mcolors.to_rgba_array(c, self._alpha)
662 self.stale = True
663
~/anaconda3/lib/python3.7/site-packages/matplotlib/colors.py in to_rgba_array(c, alpha)
277 result[mask] = 0
278 if np.any((result < 0) | (result > 1)):
--> 279 raise ValueError("RGBA values should be within 0-1 range")
280 return result
281 # Handle single values.
ValueError: RGBA values should be within 0-1 range
I am unsure what is causing this error and would appreciate help in figuring this out. Thanks!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
的
可以通过多种方式给出:c=
参数>ax.scatter[[1,0,0], [0,0,1]]
。所有这些值都必须介于 0 和 1 之间。此外,每个条目应该有 3 个(对于 RGB)或 4 个(对于 RGBA)值。["red", "#B789C0", "turquoise"]
“cornflowerblue”
。现在,当给出一个数字数组时,为了能够区分第一种情况和第二种情况,matplotlib 仅查看数组维度。如果是一维,matplotlib 假设第一种情况。对于 2D,它假设第二种情况。请注意,
Nx1
或1xN
数组也被视为二维数组。您可以使用 np.squeeze() 来“挤出”虚拟第二个维度。The
c=
parameter ofax.scatter
can be given in several ways:[[1,0,0], [0,0,1]]
. All these values need to be between 0 and 1. Moreover, there should be either 3 (for RGB) or 4 (for RGBA) values per entry.["red", "#B789C0", "turquoise"]
"cornflowerblue"
.Now, when an array of numbers is given, to be able to distinguish between the first and the second case, matplotlib just looks at the array dimension. If it is 1D, matplotlib assumes the first case. For 2D, it assumes the second case. Note that also an
Nx1
or an1xN
array is considered 2D. You can usenp.squeeze()
to "squeeze out" the dummy second dimension.在每个 RGB 值周围使用此函数:
示例:
Use this function around each rgb value:
example: