将多个列合并为一列

发布于 2025-01-13 08:15:16 字数 485 浏览 2 评论 0原文

我有以下数据框:

 Column1 Column2 Column3 Column4 Column5
0 value1 x1      y1       na     na 
1 value2 x2      y2       na     na
2 value3 x3      na       z1     na
3 value4 x4      na       z2     na
4 value5 x5      na       na     w1

我想要以下内容

 Column1 Column2 Column
0 value1 x1      y1 
1 value2 x2      y2
2 value3 x3      z1
3 value4 x4      z2
4 value5 x5      w1

我怎样才能实现这一目标?看来 stack() 不适用于此任务。

我将不胜感激任何帮助。

i have the following dataframe:

 Column1 Column2 Column3 Column4 Column5
0 value1 x1      y1       na     na 
1 value2 x2      y2       na     na
2 value3 x3      na       z1     na
3 value4 x4      na       z2     na
4 value5 x5      na       na     w1

I want the following

 Column1 Column2 Column
0 value1 x1      y1 
1 value2 x2      y2
2 value3 x3      z1
3 value4 x4      z2
4 value5 x5      w1

How can I achieve this? It seems that stack() doesn't works for this task.

I'll appreciate any help.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

伴随着你 2025-01-20 08:15:16

将初始列设置为索引,然后在轴 1 上回填并选择第一列:

cols = ['Column1','Column2']
out = df.mask(df.eq('na')).set_index(cols).bfill(axis=1,).iloc[:,0].reset_index()

print(out)

  Column1 Column2 Column3
0  value1      x1      y1
1  value2      x2      y2
2  value3      x3      z1
3  value4      x4      z2
4  value5      x5      w1

Set the initial columns as index, then back fill on axis 1 and select the first column:

cols = ['Column1','Column2']
out = df.mask(df.eq('na')).set_index(cols).bfill(axis=1,).iloc[:,0].reset_index()

print(out)

  Column1 Column2 Column3
0  value1      x1      y1
1  value2      x2      y2
2  value3      x3      z1
3  value4      x4      z2
4  value5      x5      w1
彡翼 2025-01-20 08:15:16

一种选择是使用 pyjanitor 中的 coalesce 来抽象进程(在幕后,它只是 bfill/ffill):

# pip install pyjanitor
import pandas as pd
import janitor

df.coalesce('Column3', 'Column4', 'Column5').dropna(axis=1)

  Column1 Column2 Column3
0  value1      x1      y1
1  value2      x2      y2
2  value3      x3      z1
3  value4      x4      z2
4  value5      x5      w1

One option is with coalesce from pyjanitor to abstract the process(under the hood, it's just bfill/ffill):

# pip install pyjanitor
import pandas as pd
import janitor

df.coalesce('Column3', 'Column4', 'Column5').dropna(axis=1)

  Column1 Column2 Column3
0  value1      x1      y1
1  value2      x2      y2
2  value3      x3      z1
3  value4      x4      z2
4  value5      x5      w1
不语却知心 2025-01-20 08:15:16
new_column = pd.Series()
for col in ["Column3", "Column4", "Column5"]:
    new_column = pd.concat([new_column, df[col].dropna()])
    df = df.drop(col, axis=1)
df["Column3"] = new_column
>>> df
    Column1 Column2 Column3
0   value1  x1  y1
1   value2  x2  y2
2   value3  x3  z1
3   value4  x4  z2
4   value5  x5  w1
new_column = pd.Series()
for col in ["Column3", "Column4", "Column5"]:
    new_column = pd.concat([new_column, df[col].dropna()])
    df = df.drop(col, axis=1)
df["Column3"] = new_column
>>> df
    Column1 Column2 Column3
0   value1  x1  y1
1   value2  x2  y2
2   value3  x3  z1
3   value4  x4  z2
4   value5  x5  w1
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文