R中两个细胞组差异分析中差异的统计显着性

发布于 2025-01-13 06:58:52 字数 1948 浏览 2 评论 0原文

我正在尝试测试前波和后波期间控制和暴露的 2 个细胞之间的差异。

1 - 以下是电子表格中单元格 1 和单元格 2 的数据列布局:

Pre-wave 暴露的单元格 1 |预波控制单元 1 |波后曝光单元 1 |波后控制单元 1 |预波曝光单元 2 |预波控制单元 2 |波后曝光 Cell 2 |波后控制单元 2

2 - 然后,我计算了每个 KPI 中波前和波后期间每个曝光/控制的样本大小:

N_for_KPI <- c(683,538,2225,1458,294,307,922,781)
N <- c(1951,1564,5683,4507,819,862,2479,2511)
Wave <- factor(c("A","A","B","B","C","C"))
Brand <- factor(c(0,1,0,1,0,1))
data = data.frame(N_for_KPI,N)
Proportion <-N_for_KPI / N
Proportion

fit <- glm(Proportion~Wave*Brand, family=binomial, weights=N)
summary(fit)

3 - R 然后输出结果如下:

> Proportion
[1] 0.3500769 0.3439898 0.3915186 0.3234968 0.3589744 0.3561485 0.3719242 
0.3110315 
> fit <- glm(Proportion~Wave*Brand, family=binomial, weights=N)
Error in model.frame.default(formula = Proportion ~ Wave * Brand, weights 
= N,  : 
  variable lengths differ (found for 'Wave')
> summary(fit)

Call:
glm(formula = Proportion ~ Wave * Brand, family = binomial, weights = N)

Deviance Residuals: 
[1]  0  0  0  0

Coefficients:
         Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -2.9422     0.1047 -28.096   <2e-16 ***
WaveB          0.0394     0.1203   0.328    0.743    
Brand1        -0.1574     0.1507  -1.045    0.296    
WaveB:Brand1  -0.4487     0.1786  -2.512    0.012 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance:  4.5383e+01  on 3  degrees of freedom
Residual deviance: -4.9938e-13  on 0  degrees of freedom
AIC: 35.137

Number of Fisher Scoring iterations: 3

4 - 目标是从模型中的比例变量得到显着性结果 >

问题1-引用的内容是否正确地描述了问题? 2-我该如何修复错误: model.frame.default 中的错误(公式 = 比例 ~ Wave * 品牌,权重 = N,:可变长度不同(为“Wave”找到)

提前非常感谢!!

I'm trying to test the difference in difference between 2 cells for control and exposed during pre-wave and post-wave.

1 - Here is the column layout of the data in spreadsheet for Cell 1 and Cell 2:

Pre-wave exposed Cell 1 | Pre-wave control Cell 1 | Post-wave exposed Cell 1 | Post-wave control Cell 1 | Pre-wave exposed Cell 2 | Pre-wave control Cell 2 | Post-wave exposed Cell 2 | Post-wave control Cell 2

2 - I then calculated the sample size for each exposed/control during pre-wave and post-wave in each KPI:

N_for_KPI <- c(683,538,2225,1458,294,307,922,781)
N <- c(1951,1564,5683,4507,819,862,2479,2511)
Wave <- factor(c("A","A","B","B","C","C"))
Brand <- factor(c(0,1,0,1,0,1))
data = data.frame(N_for_KPI,N)
Proportion <-N_for_KPI / N
Proportion

fit <- glm(Proportion~Wave*Brand, family=binomial, weights=N)
summary(fit)

3 - R then spit out the results as below:

> Proportion
[1] 0.3500769 0.3439898 0.3915186 0.3234968 0.3589744 0.3561485 0.3719242 
0.3110315 
> fit <- glm(Proportion~Wave*Brand, family=binomial, weights=N)
Error in model.frame.default(formula = Proportion ~ Wave * Brand, weights 
= N,  : 
  variable lengths differ (found for 'Wave')
> summary(fit)

Call:
glm(formula = Proportion ~ Wave * Brand, family = binomial, weights = N)

Deviance Residuals: 
[1]  0  0  0  0

Coefficients:
         Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -2.9422     0.1047 -28.096   <2e-16 ***
WaveB          0.0394     0.1203   0.328    0.743    
Brand1        -0.1574     0.1507  -1.045    0.296    
WaveB:Brand1  -0.4487     0.1786  -2.512    0.012 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance:  4.5383e+01  on 3  degrees of freedom
Residual deviance: -4.9938e-13  on 0  degrees of freedom
AIC: 35.137

Number of Fisher Scoring iterations: 3

4 - The goal is to get the significance results from the proportion variable in the model

Question:
1-Is the quote correct to describe the issue?
2-How can i fix the error: Error in model.frame.default(formula = Proportion ~ Wave * Brand, weights = N, : variable lengths differ (found for 'Wave')

Thank you so much in advance!!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文