使用 R 中的 Fable 进行分层时间序列预测
我正在使用寓言进行分层时间序列预测。我正在使用最佳调节方法来调节预测。这是示例代码。
agg_sw <- df %>%
aggregate_key(productcategory/brand/sku, sales = sum(sales))
#Fit the model
ets_fit <- agg_sw %>%
model(ets = ETS(sales)) %>%
reconcile(ols = min_trace(ets, method = "ols"))
# Forecast
fc <- forecast(ets_fit,h= "1 year")
是否可以在每个级别(例如:sku/品牌/产品)使用不同的预测方法并进行协调?如果是这样,请告诉我该怎么做。
I am doing hierarchical time series forecasting using fable. I am using optimal reconciliation method to reconcile the forecast. Here is the example code.
agg_sw <- df %>%
aggregate_key(productcategory/brand/sku, sales = sum(sales))
#Fit the model
ets_fit <- agg_sw %>%
model(ets = ETS(sales)) %>%
reconcile(ols = min_trace(ets, method = "ols"))
# Forecast
fc <- forecast(ets_fit,h= "1 year")
Is it possible to use different forecasting method at each level(eg:sku/brand/product) and reconcile? If so, kindly let me know how to do it.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论