oracle json_value 与 json_table 解释查询计划
我有一个疑问,它是不久前写的。基本上是一个使用 json_table 函数的物化视图。
最近,自从我们迁移到 Oracle 19c 以来,MV 有时有效,有时则无效。 我使用 oracle json_value 函数重写该查询。 查看查询计划,我发现使用 json_table 的查询要慢得多,但我不理解所有数据。
有人可以解释一下字节、CPU、时间等的含义吗?
这是使用 json_value
EXPLAIN PLAN for
SELECT
JSON_VALUE(response, '$.ErrorRecord[0].xNumber') xNumber,
JSON_VALUE(response, '$.ErrorRecord[0]."error field"') ERROR_FIELD,
JSON_VALUE(response, '$.ErrorRecord[0]."value of field in error"') VALUE_OF_FIELD_IN_ERROR,
JSON_VALUE(response, '$.ErrorRecord[0]."error description"') ERROR_DESCRIPTION,
JSON_VALUE(request, '$.Status') STATUS,
sf.sv_code CENTER,
TO_CHAR(arr.created_date_time, 'YYYYMMDD' ) DATE_OCCURANCE
FROM
aud_request_response arr ,
person p,
rep_mapper_svc_fco sf,
rep_mapper_interface_error re
WHERE
JSON_VALUE(response, '$.ErrorRecord[0].xNumber') = p.registration_number (+)
AND arr.response.Status = 'Error'
AND arr.request.interfaceName = 'CLAIMS'
AND JSON_VALUE(request, '$.DataRecord[0].ACO') = sf.fco_code(+)
AND arr.request.interfaceName = re.interface_name
AND coalesce(sf.svc_code,'ATH')
IN ('XS','YS','XZ','ZS','ASD')
GROUP BY
sf.sv_code,
JSON_VALUE(request, '$.DataRecord[0].ACO'),
arr.request.interfaceName,
JSON_VALUE(request, '$.Status'),
JSON_VALUE(response, '$.ErrorRecord[0]."error field"'),
arr.created_date_time,
arr.updated_date_time,
JSON_VALUE(response, '$.ErrorRecord[0]."value of field in error"'),
JSON_VALUE(response, '$.ErrorRecord[0]."error description"'),
JSON_VALUE(response, '$.ErrorRecord[0].xNumber') ;
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
Plan hash value: 241534218
------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1094 | 871K| | 1877K (1)| 00:01:14 |
| 1 | HASH GROUP BY | | 1094 | 871K| 4688K| 1877K (1)| 00:01:14 |
| 2 | NESTED LOOPS OUTER | | 5259 | 4190K| | 1877K (1)| 00:01:14 |
|* 3 | FILTER | | | | | | |
|* 4 | HASH JOIN RIGHT OUTER| | 5259 | 4139K| | 1866K (1)| 00:01:13 |
| 5 | TABLE ACCESS FULL | REP_MAPPER_SVC_FCO | 85 | 680 | | 3 (0)| 00:00:01 |
|* 6 | HASH JOIN RIGHT SEMI| | 5259 | 4098K| | 1866K (1)| 00:01:13 |
|* 7 | TABLE ACCESS FULL | REP_MAPPER_INTERFACE_ERROR | 33 | 363 | | 5 (0)| 00:00:01 |
|* 8 | TABLE ACCESS FULL | AUD_REQUEST_RESPONSE | 5259 | 4041K| | 1866K (1)| 00:01:13 |
|* 9 | INDEX UNIQUE SCAN | PER_ANBR_IDX | 1 | 10 | | 2 (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------------
通过使用 json_table
EXPLAIN PLAN for
SELECT
jtresponse.xNumber as xNumber,
jtresponse.error_field as ERROR_FIELD,
replace(jtresponse.value_of_field_in_error, ',interfaceName=INTERFACES','') as VALUE_OF_FIELD_IN_ERROR,
jtresponse.error_description as ERROR_DESCRIPTION,
trim(arr.response.Status) as STATUS,
sf.sv_code as CENTER,
TO_CHAR(arr.created_date_time, 'YYYYMMDD' ) as DATE_OCCURANCE
from
aud_request_response arr,
person p,
rep_mapper_svc_fco sf,
rep_mapper_interface_error re,
json_table(response, '$'
COLUMNS (
nested path '$.ErrorRecord[*]' columns (
aNumber path '$.xNumber' null on error,
error_field path '$."error field"' null on error,
value_of_field_in_error path '$."value of field in error"' null on error,
error_description path '$."error description"' null on error
))) jtresponse
,json_table(request, '$'
COLUMNS (
nested path '$.DataRecord[*]' columns (
fileControl path '$.ACO' null on error
))) jtrequest
where jtrequest.fileControl =sf.fco_code(+)
and arr.request.interfaceName = 'CLAIMS'
and arr.request.interfaceName = re.interface_name
and jtresponse.xNumber = p.registration_number (+)
and arr.response.Status='Error'
and coalesce(sf.sv_code,'ATH') in('XS','YS','XZ','ZS','ASD')
GROUP BY
sv_code,
jtrequest.fileControl,
arr.request.interfaceName,
arr.response.Status,
jtresponse.error_field,
arr.created_date_time,
arr.updated_date_time,
jtresponse.value_of_field_in_error,
jtresponse.error_description,
jtresponse.xNumber;
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
Plan hash value: 834586449
--------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 350G| 260T| | 1908M (2)| 20:42:27 |
| 1 | HASH GROUP BY | | 350G| 260T| 290T| 1908M (2)| 20:42:27 |
| 2 | NESTED LOOPS | | 350G| 260T| | 1168M (1)| 12:40:35 |
|* 3 | FILTER | | | | | | |
|* 4 | HASH JOIN RIGHT OUTER | | 42M| 32G| | 2009K (1)| 00:01:19 |
| 5 | TABLE ACCESS FULL | REP_MAPPER_SVC_FCO | 85 | 680 | | 3 (0)| 00:00:01 |
| 6 | NESTED LOOPS | | 42M| 32G| | 2009K (1)| 00:01:19 |
|* 7 | HASH JOIN RIGHT SEMI | | 5259 | 4098K| | 1866K (1)| 00:01:13 |
|* 8 | TABLE ACCESS FULL | REP_MAPPER_INTERFACE_ERROR | 33 | 363 | | 5 (0)| 00:00:01 |
|* 9 | TABLE ACCESS FULL | AUD_REQUEST_RESPONSE | 5259 | 4041K| | 1866K (1)| 00:01:13 |
| 10 | JSONTABLE EVALUATION | | | | | | |
| 11 | JSONTABLE EVALUATION | | | | | | |
--------------------------------------------------------------------------------------------------------------------
谢谢!
I have a query that it's been written a while ago. Basically a Materialized View that uses json_table function.
Recently since we moved to Oracle 19c that MV sometimes works and other times doesn't.
I rewrite that query by using oracle json_value function.
Looking at the query plan, I see that the query that is using json_table is much slower but I don't understand all that data.
Can someone explain what means the bytes, CPU, time etc.
This is using json_value
EXPLAIN PLAN for
SELECT
JSON_VALUE(response, '$.ErrorRecord[0].xNumber') xNumber,
JSON_VALUE(response, '$.ErrorRecord[0]."error field"') ERROR_FIELD,
JSON_VALUE(response, '$.ErrorRecord[0]."value of field in error"') VALUE_OF_FIELD_IN_ERROR,
JSON_VALUE(response, '$.ErrorRecord[0]."error description"') ERROR_DESCRIPTION,
JSON_VALUE(request, '$.Status') STATUS,
sf.sv_code CENTER,
TO_CHAR(arr.created_date_time, 'YYYYMMDD' ) DATE_OCCURANCE
FROM
aud_request_response arr ,
person p,
rep_mapper_svc_fco sf,
rep_mapper_interface_error re
WHERE
JSON_VALUE(response, '$.ErrorRecord[0].xNumber') = p.registration_number (+)
AND arr.response.Status = 'Error'
AND arr.request.interfaceName = 'CLAIMS'
AND JSON_VALUE(request, '$.DataRecord[0].ACO') = sf.fco_code(+)
AND arr.request.interfaceName = re.interface_name
AND coalesce(sf.svc_code,'ATH')
IN ('XS','YS','XZ','ZS','ASD')
GROUP BY
sf.sv_code,
JSON_VALUE(request, '$.DataRecord[0].ACO'),
arr.request.interfaceName,
JSON_VALUE(request, '$.Status'),
JSON_VALUE(response, '$.ErrorRecord[0]."error field"'),
arr.created_date_time,
arr.updated_date_time,
JSON_VALUE(response, '$.ErrorRecord[0]."value of field in error"'),
JSON_VALUE(response, '$.ErrorRecord[0]."error description"'),
JSON_VALUE(response, '$.ErrorRecord[0].xNumber') ;
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
Plan hash value: 241534218
------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1094 | 871K| | 1877K (1)| 00:01:14 |
| 1 | HASH GROUP BY | | 1094 | 871K| 4688K| 1877K (1)| 00:01:14 |
| 2 | NESTED LOOPS OUTER | | 5259 | 4190K| | 1877K (1)| 00:01:14 |
|* 3 | FILTER | | | | | | |
|* 4 | HASH JOIN RIGHT OUTER| | 5259 | 4139K| | 1866K (1)| 00:01:13 |
| 5 | TABLE ACCESS FULL | REP_MAPPER_SVC_FCO | 85 | 680 | | 3 (0)| 00:00:01 |
|* 6 | HASH JOIN RIGHT SEMI| | 5259 | 4098K| | 1866K (1)| 00:01:13 |
|* 7 | TABLE ACCESS FULL | REP_MAPPER_INTERFACE_ERROR | 33 | 363 | | 5 (0)| 00:00:01 |
|* 8 | TABLE ACCESS FULL | AUD_REQUEST_RESPONSE | 5259 | 4041K| | 1866K (1)| 00:01:13 |
|* 9 | INDEX UNIQUE SCAN | PER_ANBR_IDX | 1 | 10 | | 2 (0)| 00:00:01 |
------------------------------------------------------------------------------------------------------------------
By using json_table
EXPLAIN PLAN for
SELECT
jtresponse.xNumber as xNumber,
jtresponse.error_field as ERROR_FIELD,
replace(jtresponse.value_of_field_in_error, ',interfaceName=INTERFACES','') as VALUE_OF_FIELD_IN_ERROR,
jtresponse.error_description as ERROR_DESCRIPTION,
trim(arr.response.Status) as STATUS,
sf.sv_code as CENTER,
TO_CHAR(arr.created_date_time, 'YYYYMMDD' ) as DATE_OCCURANCE
from
aud_request_response arr,
person p,
rep_mapper_svc_fco sf,
rep_mapper_interface_error re,
json_table(response, '
Plan hash value: 834586449
--------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 350G| 260T| | 1908M (2)| 20:42:27 |
| 1 | HASH GROUP BY | | 350G| 260T| 290T| 1908M (2)| 20:42:27 |
| 2 | NESTED LOOPS | | 350G| 260T| | 1168M (1)| 12:40:35 |
|* 3 | FILTER | | | | | | |
|* 4 | HASH JOIN RIGHT OUTER | | 42M| 32G| | 2009K (1)| 00:01:19 |
| 5 | TABLE ACCESS FULL | REP_MAPPER_SVC_FCO | 85 | 680 | | 3 (0)| 00:00:01 |
| 6 | NESTED LOOPS | | 42M| 32G| | 2009K (1)| 00:01:19 |
|* 7 | HASH JOIN RIGHT SEMI | | 5259 | 4098K| | 1866K (1)| 00:01:13 |
|* 8 | TABLE ACCESS FULL | REP_MAPPER_INTERFACE_ERROR | 33 | 363 | | 5 (0)| 00:00:01 |
|* 9 | TABLE ACCESS FULL | AUD_REQUEST_RESPONSE | 5259 | 4041K| | 1866K (1)| 00:01:13 |
| 10 | JSONTABLE EVALUATION | | | | | | |
| 11 | JSONTABLE EVALUATION | | | | | | |
--------------------------------------------------------------------------------------------------------------------
Thank you!
COLUMNS (
nested path '$.ErrorRecord[*]' columns (
aNumber path '$.xNumber' null on error,
error_field path '$."error field"' null on error,
value_of_field_in_error path '$."value of field in error"' null on error,
error_description path '$."error description"' null on error
))) jtresponse
,json_table(request, '
Thank you!
COLUMNS (
nested path '$.DataRecord[*]' columns (
fileControl path '$.ACO' null on error
))) jtrequest
where jtrequest.fileControl =sf.fco_code(+)
and arr.request.interfaceName = 'CLAIMS'
and arr.request.interfaceName = re.interface_name
and jtresponse.xNumber = p.registration_number (+)
and arr.response.Status='Error'
and coalesce(sf.sv_code,'ATH') in('XS','YS','XZ','ZS','ASD')
GROUP BY
sv_code,
jtrequest.fileControl,
arr.request.interfaceName,
arr.response.Status,
jtresponse.error_field,
arr.created_date_time,
arr.updated_date_time,
jtresponse.value_of_field_in_error,
jtresponse.error_description,
jtresponse.xNumber;
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
Thank you!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
首先:这两个查询不等价!
json_value
查询获取DataRecord
和ErrorRecord
数组中的第一个条目。使用 json_table ,数据库为数组中的每个元素生成一行。我发现
jtrequest
和jtresponse
之间没有连接。因此查询正在生成这些数组的笛卡尔积。即,它为每个文档的第一个数组中的每个元素与第二个数组中的每个元素创建一行。行/字节/时间列都是估计值。优化器根据表统计信息认为这是多少行/数据大小/查询持续时间。
计划中的第一行是查询将返回的(估计)内容。因此,对于
json_table
,估计为:这些数字可能由于多种原因而出错,但即使它们超出了 1000 倍,您仍然会看到大量数据。
我认为您需要弄清楚原始查询的目的 - 特别是为什么它生成两个数组的笛卡尔积。这会迅速增加数据量。
First up: the two queries are not equivalent!
The
json_value
query gets the first entries in theDataRecord
andErrorRecord
arrays. Withjson_table
the database generates a row for each element in the array.I see no join between
jtrequest
andjtresponse
. So the query is generating the Cartesian product of these arrays. i.e. it's creating a row for every element from the first array combined with every element from the second for each document.The rows/bytes/time columns are all estimates. The optimizer thinks this is how many rows/size data/query duration based on the table stats.
The top line in the plan is what's (estimated) the query will return. So for
json_table
, it's estimating:These figures could be wrong for many reasons, but even if they're over by a factor of 1000x you're still looking at huge amounts of data.
I think you need to figure out the purpose of the original query - in particular why it's generating the Cartesian product of the two arrays. This quickly increases the data volumes.