CUDA:将不同线程中的向量堆栈到一维向量

发布于 2025-01-12 17:47:26 字数 123 浏览 0 评论 0原文

我在 CUDA 中的每个线程都有一个推力向量,我想按顺序堆叠向量(线程 0 中的向量,线程 1 中的向量,......以及线程 n 中的向量)以创建 1d 向量并发回 CPU 。有没有好的方法可以做到这一点?任何帮助表示赞赏。谢谢。

I have a thrust vector for each thread in CUDA, and I want to stack vectors by orders (vector in thread 0, vector in thread 1,.... and vector in thread n) to create a 1d vector and send back to CPU. Is there a good way to do this? Any help is appreciated. Thank you.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

你与清晨阳光 2025-01-19 17:47:27

将多个线程中的项目存储到单个向量中的最高效方法是线程交错。假设 4 个线程 (t0-t3) 中的每一个都有 4 个要存储的元素 (e0-e3)。最有效的最终存储模式将是:

t0e0 t1e0 t2e0 t3e0 t0e1 t1e1 t2e1 t3e1 t0e2 t1e2 t2e2 t3e2 t0e3 t1e3 t2e3 t3e3

执行此操作的代码如下所示:

#include <thrust/device_vector.h>
const int nt = 4;
const int ne = 4;
template <typename T>
__global__ void k(T *d){

  T e0 = threadIdx.x+10;
  T e1 = threadIdx.x+20;
  T e2 = threadIdx.x+30;
  T e3 = threadIdx.x+40;
  d[threadIdx.x]      = e0;
  d[threadIdx.x+nt]   = e1;
  d[threadIdx.x+2*nt] = e2;
  d[threadIdx.x+3*nt] = e3;
}

int main(){

  thrust::device_vector<int> d(ne*nt);
  k<<<1,nt>>>(thrust::raw_pointer_cast(d.data()));
}

在您的问题中,您似乎想要这个顺序:

t0e0 t0e1 t0e2 t0e3 t1e0 t1e1 t1e2 t1e3 t2e0 t2e1 t2e2 t2e3 t3e0 t3e1 t3e2 t3e3

该存储模式通常效率较低,但您可以这样实现:

#include <thrust/device_vector.h>
const int nt = 4;
const int ne = 4;
template <typename T>
__global__ void k(T *d){

  T e0 = threadIdx.x+10;
  T e1 = threadIdx.x+20;
  T e2 = threadIdx.x+30;
  T e3 = threadIdx.x+40;
  d[threadIdx.x*nt]    = e0;
  d[threadIdx.x*nt+1]  = e1;
  d[threadIdx.x*nt+2]  = e2;
  d[threadIdx.x*nt+3]  = e3;
}

int main(){

  thrust::device_vector<int> d(ne*nt);
  k<<<1,nt>>>(thrust::raw_pointer_cast(d.data()));
}

这两种情况下的存储效率差异是未合并和合并行为之间的差异,cuda SO 标签上的许多问题都涵盖了这一点,例如 这个

The most performant way to store items from several threads into a single vector will be thread-interleaved. Suppose each of 4 threads (t0-t3) has 4 elements to store (e0-e3). The final storage pattern which will be most efficient will be:

t0e0 t1e0 t2e0 t3e0 t0e1 t1e1 t2e1 t3e1 t0e2 t1e2 t2e2 t3e2 t0e3 t1e3 t2e3 t3e3

The code to do that would look like this:

#include <thrust/device_vector.h>
const int nt = 4;
const int ne = 4;
template <typename T>
__global__ void k(T *d){

  T e0 = threadIdx.x+10;
  T e1 = threadIdx.x+20;
  T e2 = threadIdx.x+30;
  T e3 = threadIdx.x+40;
  d[threadIdx.x]      = e0;
  d[threadIdx.x+nt]   = e1;
  d[threadIdx.x+2*nt] = e2;
  d[threadIdx.x+3*nt] = e3;
}

int main(){

  thrust::device_vector<int> d(ne*nt);
  k<<<1,nt>>>(thrust::raw_pointer_cast(d.data()));
}

In your question it seems that you want this order:

t0e0 t0e1 t0e2 t0e3 t1e0 t1e1 t1e2 t1e3 t2e0 t2e1 t2e2 t2e3 t3e0 t3e1 t3e2 t3e3

That storage pattern will generally be less efficient, but you could achieve it like this:

#include <thrust/device_vector.h>
const int nt = 4;
const int ne = 4;
template <typename T>
__global__ void k(T *d){

  T e0 = threadIdx.x+10;
  T e1 = threadIdx.x+20;
  T e2 = threadIdx.x+30;
  T e3 = threadIdx.x+40;
  d[threadIdx.x*nt]    = e0;
  d[threadIdx.x*nt+1]  = e1;
  d[threadIdx.x*nt+2]  = e2;
  d[threadIdx.x*nt+3]  = e3;
}

int main(){

  thrust::device_vector<int> d(ne*nt);
  k<<<1,nt>>>(thrust::raw_pointer_cast(d.data()));
}

The storage efficiency difference in these two cases is the difference between uncoalesced and coalesced behavior, which is covered in numerous questions here on the cuda SO tag, such as this one.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文