使用 lmfit 在循环中建模和拟合双峰对数正态分布
我花了太多时间试图解决这个问题 - 所以是时候寻求帮助了。我尝试使用 lmfit 来拟合两个对数正态分布(a 和 c)以及这两个对数正态分布的总和(a+c)以适应大小分布。模式a以x=0.2、y=1为中心,模式c以x=1.2、y=<<<1为中心。有许多大小分布(>200),它们都略有不同,并从外部循环传递到以下代码。对于这个例子,我提供了一个现实生活中的分布,但没有包含循环。希望我的代码有足够的注释,以便理解我想要实现的目标。
我一定是缺少对 lmfit 的一些基本理解(剧透警告 - 我也不擅长数学),因为我有两个问题:
- 拟合(a、c 和 a+c)不能准确地表示数据。请注意拟合(红色实线)如何偏离数据(蓝色实线)。我认为这与初始猜测参数有关。我已经尝试了很多,但一直无法找到合适的。
- 使用“新”最佳拟合值(结果2、结果3)重新运行模型似乎根本没有显着改善拟合度。为什么?
这是我之前制作的一个,显示了我所追求的拟合类型(使用旧的 mpfit 模块生成,使用与下面提供的数据不同的数据,并使用唯一的初始最佳猜测参数(不是在环形)。请原谅图例格式,我不得不删除某些信息):
非常感谢任何帮助。下面是带有示例分布的代码:
from lmfit import models
import matplotlib.pyplot as plt
import numpy as np
# real life data example
y = np.array([1.000000, 0.754712, 0.610303, 0.527856, 0.412125, 0.329689, 0.255756, 0.184424, 0.136819,
0.102316, 0.078763, 0.060896, 0.047118, 0.020297, 0.007714, 0.010202, 0.008710, 0.005579,
0.004644, 0.004043, 0.002618, 0.001194, 0.001263, 0.001043, 0.000584, 0.000330, 0.000179,
0.000117, 0.000050, 0.000035, 0.000017, 0.000007])
x = np.array([0.124980, 0.130042, 0.135712, 0.141490, 0.147659, 0.154711, 0.162421, 0.170855, 0.180262,
0.191324, 0.203064, 0.215738, 0.232411, 0.261810, 0.320252, 0.360761, 0.448802, 0.482528,
0.525526, 0.581518, 0.658988, 0.870114, 1.001815, 1.238899, 1.341285, 1.535134, 1.691963,
1.973359, 2.285620, 2.572177, 2.900414, 3.342739])
# create the joint model using prefixes for each mode
model = (models.LognormalModel(prefix='p1_') +
models.LognormalModel(prefix='p2_'))
# add some best guesses for the model parameters
params = model.make_params(p1_center=0.1, p1_sigma=2, p1_amplitude=1,
p2_center=1, p2_sigma=2, p2_amplitude=0.000000000000001)
# bound those best guesses
# params['p1_amplitude'].min = 0.0
# params['p1_amplitude'].max = 1e5
# params['p1_sigma'].min = 1.01
# params['p1_sigma'].max = 5
# params['p1_center'].min = 0.01
# params['p1_center'].max = 1.0
#
# params['p2_amplitude'].min = 0.0
# params['p2_amplitude'].max = 1
# params['p2_sigma'].min = 1.01
# params['p2_sigma'].max = 10
# params['p2_center'].min = 1.0
# params['p2_center'].max = 3
# actually fit the model
result = model.fit(y, params, x=x)
# ====================================
# ================================
# re-run using the best-fit params derived above
params2 = model.make_params(p1_center=result.best_values['p1_center'], p1_sigma=result.best_values['p1_sigma'],
p1_amplitude=result.best_values['p1_amplitude'],
p2_center=result.best_values['p2_center'], p2_sigma=result.best_values['p2_sigma'],
p2_amplitude=result.best_values['p2_amplitude'], )
# re-fit the model
result2 = model.fit(y, params2, x=x)
# ================================
# re-run again using the best-fit params derived above
params3 = model.make_params(p1_center=result2.best_values['p1_center'], p1_sigma=result2.best_values['p1_sigma'],
p1_amplitude=result2.best_values['p1_amplitude'],
p2_center=result2.best_values['p2_center'], p2_sigma=result2.best_values['p2_sigma'],
p2_amplitude=result2.best_values['p2_amplitude'], )
# re-fit the model
result3 = model.fit(y, params3, x=x)
# ================================
# add individual fine and coarse modes using the revised fit parameters
model_a = models.LognormalModel()
params_a = model_a.make_params(center=result3.best_values['p1_center'], sigma=result3.best_values['p1_sigma'],
amplitude=result3.best_values['p1_amplitude'])
result_a = model_a.fit(y, params_a, x=x)
model_c = models.LognormalModel()
params_c = model_c.make_params(center=result3.best_values['p2_center'], sigma=result3.best_values['p2_sigma'],
amplitude=result3.best_values['p2_amplitude'])
result_c = model_c.fit(y, params_c, x=x)
# ====================================
plt.plot(x, y, 'b-', label='data')
plt.plot(x, result.best_fit, 'r-', label='best_fit_1')
plt.plot(x, result.init_fit, 'lightgrey', ls=':', label='ini_fit_1')
plt.plot(x, result2.best_fit, 'r--', label='best_fit_2')
plt.plot(x, result2.init_fit, 'lightgrey', ls='--', label='ini_fit_2')
plt.plot(x, result3.best_fit, 'r.-', label='best_fit_3')
plt.plot(x, result3.init_fit, 'lightgrey', ls='--', label='ini_fit_3')
plt.plot(x, result_a.best_fit, 'grey', ls=':', label='best_fit_a')
plt.plot(x, result_c.best_fit, 'grey', ls='--', label='best_fit_c')
plt.xscale("log")
plt.yscale("log")
plt.legend()
plt.show()
I have been spending FAR too much time trying to figure this out - so time to seek help. I am attempting to use lmfit to fit two lognormals (a and c) as well as the sum of these two lognormals (a+c) to a size distribution. Mode a centers around x=0.2, y=1, mode c centers around x=1.2, y=<<<1. There are numerous size distributions (>200) which are all slightly different and are passed in to the following code from an outside loop. For this example, I have provided a real life distribution and have not included the loop. Hopefully my code is sufficiently annotated to allow understanding of what I am trying to achieve.
I must be missing some fundamental understanding of lmfit (spoiler alert - I'm not great at Maths either) as I have 2 problems:
- the fits (a, c and a+c) do not accurately represent the data. Note how the fit (red solid line) diverts away from the data (blue solid line). I assume this is something to do with the initial guess parameters. I have tried LOTS and have been unable to get a good fit.
- re-running the model with "new" best fit values (results2, results3) doesn't appear to significantly improve the fit at all. Why?
Example result using provided x and y data:
Here is one-I-made-earlier showing the type of fit I am after (produced using the older mpfit module, using different data than provided below and using unique initial best guess parameters (not in a loop). Excuse the legend format, I had to remove certain information):
Any assistance is much appreciated. Here is the code with an example distribution:
from lmfit import models
import matplotlib.pyplot as plt
import numpy as np
# real life data example
y = np.array([1.000000, 0.754712, 0.610303, 0.527856, 0.412125, 0.329689, 0.255756, 0.184424, 0.136819,
0.102316, 0.078763, 0.060896, 0.047118, 0.020297, 0.007714, 0.010202, 0.008710, 0.005579,
0.004644, 0.004043, 0.002618, 0.001194, 0.001263, 0.001043, 0.000584, 0.000330, 0.000179,
0.000117, 0.000050, 0.000035, 0.000017, 0.000007])
x = np.array([0.124980, 0.130042, 0.135712, 0.141490, 0.147659, 0.154711, 0.162421, 0.170855, 0.180262,
0.191324, 0.203064, 0.215738, 0.232411, 0.261810, 0.320252, 0.360761, 0.448802, 0.482528,
0.525526, 0.581518, 0.658988, 0.870114, 1.001815, 1.238899, 1.341285, 1.535134, 1.691963,
1.973359, 2.285620, 2.572177, 2.900414, 3.342739])
# create the joint model using prefixes for each mode
model = (models.LognormalModel(prefix='p1_') +
models.LognormalModel(prefix='p2_'))
# add some best guesses for the model parameters
params = model.make_params(p1_center=0.1, p1_sigma=2, p1_amplitude=1,
p2_center=1, p2_sigma=2, p2_amplitude=0.000000000000001)
# bound those best guesses
# params['p1_amplitude'].min = 0.0
# params['p1_amplitude'].max = 1e5
# params['p1_sigma'].min = 1.01
# params['p1_sigma'].max = 5
# params['p1_center'].min = 0.01
# params['p1_center'].max = 1.0
#
# params['p2_amplitude'].min = 0.0
# params['p2_amplitude'].max = 1
# params['p2_sigma'].min = 1.01
# params['p2_sigma'].max = 10
# params['p2_center'].min = 1.0
# params['p2_center'].max = 3
# actually fit the model
result = model.fit(y, params, x=x)
# ====================================
# ================================
# re-run using the best-fit params derived above
params2 = model.make_params(p1_center=result.best_values['p1_center'], p1_sigma=result.best_values['p1_sigma'],
p1_amplitude=result.best_values['p1_amplitude'],
p2_center=result.best_values['p2_center'], p2_sigma=result.best_values['p2_sigma'],
p2_amplitude=result.best_values['p2_amplitude'], )
# re-fit the model
result2 = model.fit(y, params2, x=x)
# ================================
# re-run again using the best-fit params derived above
params3 = model.make_params(p1_center=result2.best_values['p1_center'], p1_sigma=result2.best_values['p1_sigma'],
p1_amplitude=result2.best_values['p1_amplitude'],
p2_center=result2.best_values['p2_center'], p2_sigma=result2.best_values['p2_sigma'],
p2_amplitude=result2.best_values['p2_amplitude'], )
# re-fit the model
result3 = model.fit(y, params3, x=x)
# ================================
# add individual fine and coarse modes using the revised fit parameters
model_a = models.LognormalModel()
params_a = model_a.make_params(center=result3.best_values['p1_center'], sigma=result3.best_values['p1_sigma'],
amplitude=result3.best_values['p1_amplitude'])
result_a = model_a.fit(y, params_a, x=x)
model_c = models.LognormalModel()
params_c = model_c.make_params(center=result3.best_values['p2_center'], sigma=result3.best_values['p2_sigma'],
amplitude=result3.best_values['p2_amplitude'])
result_c = model_c.fit(y, params_c, x=x)
# ====================================
plt.plot(x, y, 'b-', label='data')
plt.plot(x, result.best_fit, 'r-', label='best_fit_1')
plt.plot(x, result.init_fit, 'lightgrey', ls=':', label='ini_fit_1')
plt.plot(x, result2.best_fit, 'r--', label='best_fit_2')
plt.plot(x, result2.init_fit, 'lightgrey', ls='--', label='ini_fit_2')
plt.plot(x, result3.best_fit, 'r.-', label='best_fit_3')
plt.plot(x, result3.init_fit, 'lightgrey', ls='--', label='ini_fit_3')
plt.plot(x, result_a.best_fit, 'grey', ls=':', label='best_fit_a')
plt.plot(x, result_c.best_fit, 'grey', ls='--', label='best_fit_c')
plt.xscale("log")
plt.yscale("log")
plt.legend()
plt.show()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我可以给出三个主要建议:
模型的部分对参数完全不敏感
价值观。您的初始模型有点偏离几个订单
震级。
结果——拟合图代表了实际情况
数值结果。没有显示您打印出了合身的尺寸
报告很好地表明您没有查看实际情况
结果。确实,总是看结果。
数据和模型,使用您选择绘制数据的方式来指导
你如何拟合数据。特别是在你的情况下,如果你是
以对数刻度绘制,然后将数据的对数拟合到对数
模型的:适合“日志空间”。
这样的拟合可能如下所示:
这将打印
并生成类似
There are three main pieces of advice I can give:
portions of the model completely insensitive to the parameter
values. Your initial model is sort of off by several orders of
magnitude.
result -- the plot of the fit is a representation of the actual
numerical results. Not showing that you printed out the fit
report is a good indication that you did not look at the actual
result. Really, always look at the results.
the data and model, use how you choose to plot the data to guide
how you fit the data. Specifically in your case, if you are
plotting on a log scale, then fit the log of the data to the log
of the model: fit in "log space".
Such a fit might look like this:
This will print out
and generate a plot like