如何将混合效应模型应用于我的数据集
我有一个很大的数据集,但对于此分析,我重点关注三列,包括 (a) 激素 X 的浓度 (ug/g)、(b) 体重 (kg) 和性别(男性/女性)。
我只是想知道如何最好地进行分析,我认为混合效应模型是最合适的。也就是说,激素 X 的浓度随着体重的增加而增加,但它也取决于性别。
我尝试使用此代码:
model2=lme(conc.hormone~gender*Body.Mass..kg.,
data=epidemiologythesisdata,
na.omit = TRUE)
...但是我收到错误。有没有一种方法可以用两条不同的性别线来绘制激素浓度和体重之间的关系?
谢谢
I have a large dataset but for this analysis I am focusing on three columns that includes (a) the concentration of hormone X (ug/g), (b) body mass (kg) and gender (male/female).
I am just wondering how best to approach the analysis and I thought a mixed effect model was most appropriate. That is, the concentration of hormone X increases with body mass however it is also dependent on gender.
I tried using this code:
model2=lme(conc.hormone~gender*Body.Mass..kg.,
data=epidemiologythesisdata,
na.omit = TRUE)
...however I received an error. Is there a way that I can graph the relationship between hormone concentration and body mass with two different lines for gender?
Thanks
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论