如何在 theano/lasagne 中以树的形式遍历模型层?

发布于 2025-01-11 09:15:15 字数 1648 浏览 0 评论 0原文

我需要按树级别遍历模型的层,以便获得祖先(输入)和前驱(输出)层以及同一级别中的相邻层。

这是一个模型作为示例:

import lasagne
def toy_model():
    
    l_input = lasagne.layers.InputLayer(shape=(None, inp_len, n_inputs))

    l_dim_a = lasagne.layers.DimshuffleLayer(l_input, (0, 2, 1))

    l_conv_a = lasagne.layers.Conv1DLayer(
        incoming=l_dim_a, num_filters=16, pad='same',
        filter_size=3, stride=1, nonlinearity=lasagne.nonlinearities.rectify)
    l_conv_a_b = lasagne.layers.batch_norm(l_conv_a)

    l_conv_b = lasagne.layers.Conv1DLayer(
        incoming=l_dim_a, num_filters=16, pad='same',
        filter_size=3, stride=1, nonlinearity=lasagne.nonlinearities.rectify)
    l_conv_b_b = lasagne.layers.batch_norm(l_conv_b)

    l_conv_c = lasagne.layers.Conv1DLayer(
        incoming=l_dim_a, num_filters=16, pad='same',
        filter_size=3, stride=1, nonlinearity=lasagne.nonlinearities.rectify)
    l_conv_c_b = lasagne.layers.batch_norm(l_conv_c)

    l_c_a = lasagne.layers.ConcatLayer([l_conv_a_b, l_conv_b_b, l_conv_c_b], axis=1)
    
    l_dim_b = lasagne.layers.DimshuffleLayer(l_conv_c, (0, 2, 1))
    
    l_c_b = lasagne.layers.ConcatLayer([l_input, l_dim_b], axis=2)

    l_reshape = lasagne.layers.ReshapeLayer(l_c_b, (batch_size* inp_len, n_inputs + (3*3) ))
   
    l_FC = lasagne.layers.DenseLayer(l_reshape, num_units=200, nonlinearity=lasagne.nonlinearities.rectify)


    l_prop = lasagne.layers.DenseLayer(l_FC, num_units=n_classes, nonlinearity=lasagne.nonlinearities.softmax)

    l_output = lasagne.layers.ReshapeLayer(l_prop, (batch_size, inp_len, n_classes))

    return l_input, l_output

提供一个示例(如果有)将会有所帮助。

I need to traverse the model's layers by tree levels, such that getting the ancestor(input) and predecessor(output) layers and the adjacent layers in the same level.

here's a model as an example:

import lasagne
def toy_model():
    
    l_input = lasagne.layers.InputLayer(shape=(None, inp_len, n_inputs))

    l_dim_a = lasagne.layers.DimshuffleLayer(l_input, (0, 2, 1))

    l_conv_a = lasagne.layers.Conv1DLayer(
        incoming=l_dim_a, num_filters=16, pad='same',
        filter_size=3, stride=1, nonlinearity=lasagne.nonlinearities.rectify)
    l_conv_a_b = lasagne.layers.batch_norm(l_conv_a)

    l_conv_b = lasagne.layers.Conv1DLayer(
        incoming=l_dim_a, num_filters=16, pad='same',
        filter_size=3, stride=1, nonlinearity=lasagne.nonlinearities.rectify)
    l_conv_b_b = lasagne.layers.batch_norm(l_conv_b)

    l_conv_c = lasagne.layers.Conv1DLayer(
        incoming=l_dim_a, num_filters=16, pad='same',
        filter_size=3, stride=1, nonlinearity=lasagne.nonlinearities.rectify)
    l_conv_c_b = lasagne.layers.batch_norm(l_conv_c)

    l_c_a = lasagne.layers.ConcatLayer([l_conv_a_b, l_conv_b_b, l_conv_c_b], axis=1)
    
    l_dim_b = lasagne.layers.DimshuffleLayer(l_conv_c, (0, 2, 1))
    
    l_c_b = lasagne.layers.ConcatLayer([l_input, l_dim_b], axis=2)

    l_reshape = lasagne.layers.ReshapeLayer(l_c_b, (batch_size* inp_len, n_inputs + (3*3) ))
   
    l_FC = lasagne.layers.DenseLayer(l_reshape, num_units=200, nonlinearity=lasagne.nonlinearities.rectify)


    l_prop = lasagne.layers.DenseLayer(l_FC, num_units=n_classes, nonlinearity=lasagne.nonlinearities.softmax)

    l_output = lasagne.layers.ReshapeLayer(l_prop, (batch_size, inp_len, n_classes))

    return l_input, l_output

providing an example, if any, will be helpful.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文