如何使这个高阶记忆函数适用于递归函数?
我有一个基本的记忆函数,编写为
function memo(func) {
const cache = new Map()
return function (...args) {
const cacheKey = args.join('-')
if (!cache.has(cacheKey)) {
const value = func(...args)
cache.set(cacheKey, value)
return value
}
return cache.get(cacheKey)
}
}
它不适用于递归调用自身的函数。例如:
const fibonacci = (n) => {
if (n <= 1) return 1
return fibonacci(n - 1) + fibonacci(n - 2)
}
const memoizedFib = memo(fibonacci)
memoizedFib(20)
在斐波那契内部,它仍然进行大量重复计算。
我想避免这种情况的一种方法是将记忆插入到函数的实现中。
const cache = new Map();
const memoFibonacci = (n) => {
if (memory.has(n)) return memory.get(n);
if (n <= 1) return 1;
const result = memoFibonacci(n - 1) + memoFibonacci(n - 2);
memory.set(n, result);
return result;
};
我想知道是否有一种方法可以使高阶 util 函数与斐波那契这样的递归函数一起使用?
I have a basic memoization function written as
function memo(func) {
const cache = new Map()
return function (...args) {
const cacheKey = args.join('-')
if (!cache.has(cacheKey)) {
const value = func(...args)
cache.set(cacheKey, value)
return value
}
return cache.get(cacheKey)
}
}
It doesn't work with functions that recursively calls itself. For example:
const fibonacci = (n) => {
if (n <= 1) return 1
return fibonacci(n - 1) + fibonacci(n - 2)
}
const memoizedFib = memo(fibonacci)
memoizedFib(20)
Here inside fibonacci
, it still does a lot of duplicate calculations.
I guess a way to avoid that is to insert the memoization into the implementation for the function.
const cache = new Map();
const memoFibonacci = (n) => {
if (memory.has(n)) return memory.get(n);
if (n <= 1) return 1;
const result = memoFibonacci(n - 1) + memoFibonacci(n - 2);
memory.set(n, result);
return result;
};
I wonder if there is a way to make the higher order util function work with recursive functions like fibonacci
?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
这是一个非记忆递归函数作为基准:
直接定义一个记忆函数
您可以定义函数和记忆,这将使所有递归调用都使用记忆版本:
它看起来如何
演示
用记忆的内容替换原始内容
您也可以稍后通过替换原始绑定来记忆它。为此,该函数不应定义为 const。这仍然会使将来的调用使用记忆版本:
它看起来如何
或
演示
警告
请注意,这仅适用于引用您可以控制的绑定的递归函数。并非所有递归函数都是这样。几个例子:
命名函数表达式
例如,如果函数是用本地名称定义的,则只有它可以用来引用自身:
它看起来如何
演示
这是因为函数表达式的名称可以在函数体内使用,并且不能从外部覆盖。实际上,它与制作它相同:
内部函数
它也不适用于使用内部递归助手的函数:
演示
模块/其他范围
如果您无权访问函数的定义,那么您无法真正控制它用于调用自身的绑定。使用模块时最容易看到:
fibonacci.js
index.js
这不会影响递归函数
,因为它仍然从模块范围引用自身。
Here is a non-memoised recursive function as a benchmark:
Directly define a memoised function
You can define the function and memoise which would make all recursive calls use the memoised version:
How it looks
Demo
Replace original with memoised
You can also memoise it later by replacing the original binding for it. For this to work, the function should not be defined as
const
. This would still make future calls use the memoised version:How it looks
OR
Demo
Warnings
Be aware that this will only work for recursive functions that refer to a binding that you can control. Not all recursive functions are like that. Few examples:
Named function expressions
For example if the function is defined with a local name which only it can use to refer to itself:
How it looks
Demo
This is because the name of the function expression is usable in the body of the function and cannot be overwritten from the outside. Effectively, it is the same as making it:
Inner functions
It would also not work for functions that use an inner recursion helper:
Demo
Modules / other scopes
If you do not have access to the definition of the function, then you cannot really control the binding it uses to call itself. Easiest to see when using modules:
How it looks
fibonacci.js
index.js
This will not affect the recursive function since it still refers to itself from the module scope.
注意:这并没有涵盖@VLAZ 的答案中提到的所有可能性。只是陈述一种可能的方式。另外,使用
eval()
不是一个好主意。With this we don't have to replace the original function:
为了支持非箭头函数,我们可以检索它们的代码并使用 eval 将它们转换为箭头函数。
Note: this doesn't cover all the possibilities mentioned in @VLAZ's answer. Just stating one possible way. Also, using
eval()
is not a good idea.With this we don't have to replace the original function:
To support non-arrow functions we can retrieve their code and convert them to arrow functions using eval.
@trincott 的参数时,记忆功能将无法正常工作,解决方案是使用 <我在下面演示的基于代码>映射的“链接列表”
@VLAZ已经涵盖了记忆化,并强调,这个答案只是简单地保存各种类型的参数可能存在于列表中论点
@trincott is right and a solution to that would be to have a
Map
based "linked list" of sorts which I demonstrate below@VLAZ already covered the memoization and to emphasise, this answer is simply to hold the various types of arguments that may exist in a list of arguments