Pytorch 预测与 Darts,欢迎体验

发布于 2025-01-11 08:36:55 字数 424 浏览 4 评论 0原文

我想知道 pytorch 预测之间使用哪个包(https://pytorch-forecasting.readthedocs。 io/en/stable/) 或 darts (https://unit8co.github.io/darts/)。我一直在尝试这两种方法,看起来 darts 在编写和风格上更像 sklearn,而 pytorch 预测使用不同的数据类。

欢迎任何比较两者的评论。

我不知道你们中的一些人是否对这两个库进行了性能比较。

提前致谢!

I was wondering which package to use between pytorch forecasting (https://pytorch-forecasting.readthedocs.io/en/stable/) or darts (https://unit8co.github.io/darts/). I have been trying both, it looks like darts is more sklearn-like in its writing and style and pytorch forescasting uses different data classes.

Any comment comparing the two would be welcome.

I don't know if some of you might have carried out a performance comparison between both libraries.

Thanks in advance!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

懵少女 2025-01-18 08:36:55

我认为 darts 的最大优势之一是它的 Timeseries 对象,当你熟悉 sklearn 时,它非常像 pandas 并且非常直观。然而,我也确实看到了 pytorch 预测“更好”(更容易)处理分类数据的优势,并且需要更陡峭的学习曲线来理解 pytorch 预测。我想说 pytorch 预测有时优于使用相同模型的 darts。

I think one of the biggest advantage of darts is its Timeseries Object which is very pandas-like and very intuitive when you are familiar with sklearn. However, I also do see the advantage that pytorch-forecasting dealt with categorical data "better" (easier) and it takes a steeper learning curve to understand pytorch-forecasting. I would say pytorch-forecasting sometimes outperform darts using the same model.

倾城泪 2025-01-18 08:36:55

如果有帮助的话,我刚刚在 Darts 中为 Temporal Fusion Transformer 模型创建了一个管道,并考虑在 PytorchForecasting 中重建它,原因如下:

  • Darts 尚不支持 TFT 模型的可变重要性输出(至少我还没有能够弄清楚)
  • 对静态分类特征的更好支持

如上所述,Darts 中的数据集处理非常好,并且他们抽象了 Pytorch 数据加载器

If helpful, I have just made a pipeline for a Temporal Fusion Transformer model in Darts and am considering rebuilding it in PytorchForecasting for the following reasons:

  • Darts doesn't yet support output of variable importance from the TFT model (at least I haven't been able to figure it out)
  • Better support for static categorical features

As mentioned above, the dataset handling in Darts is pretty good and they have abstracted away the Pytorch dataloader

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文