RuntimeError:预期 3 维权重 [64, 512, 1] 的 3 维输入,但得到了大小 [4, 512] 的 2 维输入

发布于 2025-01-11 06:07:37 字数 4414 浏览 1 评论 0原文

你好,下面是我正在尝试运行的 pytorch 模型。但出现错误。我也发布了错误跟踪。除非我添加卷积层,否则它运行得很好。我对深度学习和 Pytorch 还很陌生。如果这是一个愚蠢的问题,我深表歉意。我正在使用 conv1d 那么为什么 conv1d 应该期望 3 维输入并且它也得到一个 2d 输入,这也很奇怪。

class Net(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc1 = nn.Linear(CROP_SIZE*CROP_SIZE*3, 512)
            self.conv1d1 = nn.Conv1d(in_channels=512, out_channels=64, kernel_size=1, stride=2)
            self.fc2 = nn.Linear(64, 128)
            self.conv1d2 = nn.Conv1d(in_channels=128, out_channels=64, kernel_size=1, stride=2)
            self.fc3 = nn.Linear(64, 256)
            self.conv1d3 = nn.Conv1d(in_channels=256, out_channels=64, kernel_size=1, stride=2)
            self.fc4 = nn.Linear(64, 256)
            self.fc4 = nn.Linear(256, 128)
            self.fc5 = nn.Linear(128, 64)
            self.fc6 = nn.Linear(64, 32)
            self.fc7 = nn.Linear(32, 64)
   

     self.fc8 = nn.Linear(64, frame['landmark_id'].nunique())

    def forward(self, x):
        x = F.relu(self.conv1d1(self.fc1(x)))
        x = F.relu(self.conv1d2(self.fc2(x)))
        x = F.relu(self.conv1d3(self.fc3(x)))
        x = F.relu(self.fc4(x))
        x = F.relu(self.fc5(x))
        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))
        x = self.fc8(x)
        return F.log_softmax(x, dim=1)


net = Net()

import torch.optim as optim

loss_function = nn.CrossEntropyLoss()
net.to(torch.device('cuda:0'))
for epoch in range(3): # 3 full passes over the data
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    for data in tqdm(train_loader):  # `data` is a batch of data
        X = data['image'].to(device)  # X is the batch of features
        y = data['landmarks'].to(device) # y is the batch of targets.
        optimizer.zero_grad()  # sets gradients to 0 before loss calc. You will do this likely every step.
        output = net(X.view(-1,CROP_SIZE*CROP_SIZE*3))  # pass in the reshaped batch
#         print(np.argmax(output))
#         print(y)
        loss = F.nll_loss(output, y)  # calc and grab the loss value
        loss.backward()  # apply this loss backwards thru the network's parameters
        optimizer.step()  # attempt to optimize weights to account for loss/gradients

    print(loss)  # print loss. We hope loss (a measure of wrong-ness) declines! 

错误追踪

    ---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-42-f5ed7999ce57> in <module>
      5         y = data['landmarks'].to(device) # y is the batch of targets.
      6         optimizer.zero_grad()  # sets gradients to 0 before loss calc. You will do this likely every step.
----> 7         output = net(X.view(-1,CROP_SIZE*CROP_SIZE*3))  # pass in the reshaped batch
      8 #         print(np.argmax(output))
      9 #         print(y)

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    548             result = self._slow_forward(*input, **kwargs)
    549         else:
--> 550             result = self.forward(*input, **kwargs)
    551         for hook in self._forward_hooks.values():
    552             hook_result = hook(self, input, result)

<ipython-input-37-6d3e34d425a0> in forward(self, x)
     16 
     17     def forward(self, x):
---> 18         x = F.relu(self.conv1d1(self.fc1(x)))
     19         x = F.relu(self.conv1d2(self.fc2(x)))
     20         x = F.relu(self.conv1d3(self.fc3(x)))

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    548             result = self._slow_forward(*input, **kwargs)
    549         else:
--> 550             result = self.forward(*input, **kwargs)
    551         for hook in self._forward_hooks.values():
    552             hook_result = hook(self, input, result)

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input)
    210                             _single(0), self.dilation, self.groups)
    211         return F.conv1d(input, self.weight, self.bias, self.stride,
--> 212                         self.padding, self.dilation, self.groups)
    213 
    214 

RuntimeError: Expected 3-dimensional input for 3-dimensional weight [64, 512, 1], but got 2-dimensional input of size [4, 512] instead

Hello below is the pytorch model I am trying to run. But getting error. I have posted the error trace as well. It was running very well unless I added convolution layers. I am still new to deep learning and Pytorch. So I apologize if this is silly question. I am using conv1d so why should conv1d expect 3 dimensional input and it is also getting a 2d input which is also odd.

class Net(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc1 = nn.Linear(CROP_SIZE*CROP_SIZE*3, 512)
            self.conv1d1 = nn.Conv1d(in_channels=512, out_channels=64, kernel_size=1, stride=2)
            self.fc2 = nn.Linear(64, 128)
            self.conv1d2 = nn.Conv1d(in_channels=128, out_channels=64, kernel_size=1, stride=2)
            self.fc3 = nn.Linear(64, 256)
            self.conv1d3 = nn.Conv1d(in_channels=256, out_channels=64, kernel_size=1, stride=2)
            self.fc4 = nn.Linear(64, 256)
            self.fc4 = nn.Linear(256, 128)
            self.fc5 = nn.Linear(128, 64)
            self.fc6 = nn.Linear(64, 32)
            self.fc7 = nn.Linear(32, 64)
   

     self.fc8 = nn.Linear(64, frame['landmark_id'].nunique())

    def forward(self, x):
        x = F.relu(self.conv1d1(self.fc1(x)))
        x = F.relu(self.conv1d2(self.fc2(x)))
        x = F.relu(self.conv1d3(self.fc3(x)))
        x = F.relu(self.fc4(x))
        x = F.relu(self.fc5(x))
        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))
        x = self.fc8(x)
        return F.log_softmax(x, dim=1)


net = Net()

import torch.optim as optim

loss_function = nn.CrossEntropyLoss()
net.to(torch.device('cuda:0'))
for epoch in range(3): # 3 full passes over the data
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    for data in tqdm(train_loader):  # `data` is a batch of data
        X = data['image'].to(device)  # X is the batch of features
        y = data['landmarks'].to(device) # y is the batch of targets.
        optimizer.zero_grad()  # sets gradients to 0 before loss calc. You will do this likely every step.
        output = net(X.view(-1,CROP_SIZE*CROP_SIZE*3))  # pass in the reshaped batch
#         print(np.argmax(output))
#         print(y)
        loss = F.nll_loss(output, y)  # calc and grab the loss value
        loss.backward()  # apply this loss backwards thru the network's parameters
        optimizer.step()  # attempt to optimize weights to account for loss/gradients

    print(loss)  # print loss. We hope loss (a measure of wrong-ness) declines! 

Error trace

    ---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-42-f5ed7999ce57> in <module>
      5         y = data['landmarks'].to(device) # y is the batch of targets.
      6         optimizer.zero_grad()  # sets gradients to 0 before loss calc. You will do this likely every step.
----> 7         output = net(X.view(-1,CROP_SIZE*CROP_SIZE*3))  # pass in the reshaped batch
      8 #         print(np.argmax(output))
      9 #         print(y)

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    548             result = self._slow_forward(*input, **kwargs)
    549         else:
--> 550             result = self.forward(*input, **kwargs)
    551         for hook in self._forward_hooks.values():
    552             hook_result = hook(self, input, result)

<ipython-input-37-6d3e34d425a0> in forward(self, x)
     16 
     17     def forward(self, x):
---> 18         x = F.relu(self.conv1d1(self.fc1(x)))
     19         x = F.relu(self.conv1d2(self.fc2(x)))
     20         x = F.relu(self.conv1d3(self.fc3(x)))

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    548             result = self._slow_forward(*input, **kwargs)
    549         else:
--> 550             result = self.forward(*input, **kwargs)
    551         for hook in self._forward_hooks.values():
    552             hook_result = hook(self, input, result)

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input)
    210                             _single(0), self.dilation, self.groups)
    211         return F.conv1d(input, self.weight, self.bias, self.stride,
--> 212                         self.padding, self.dilation, self.groups)
    213 
    214 

RuntimeError: Expected 3-dimensional input for 3-dimensional weight [64, 512, 1], but got 2-dimensional input of size [4, 512] instead

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

携余温的黄昏 2025-01-18 06:07:37

您应该了解卷积的工作原理(例如,请参阅此答案)和一些神经网络基础知识(来自 PyTorch 的本教程)。

基本上,Conv1d 需要形状为 [batch、channels、features] 的输入(其中 features 可以是一些时间步长,并且可以变化,请参阅示例)。

nn.Linear 需要形状 [batch, features],因为它是完全连接的,并且每个输入特征都连接到每个输出特征。

您可以自己验证这些形状,对于 torch.nn.Linear

import torch

layer = torch.nn.Linear(20, 10)
data = torch.randn(64, 20)  # [batch, in_features]
layer(data).shape  # [64, 10], [batch, out_features]

对于 Conv1d

layer = torch.nn.Conv1d(in_channels=20, out_channels=10, kernel_size=3, padding=1)
data = torch.randn(64, 20, 15)  # [batch, channels, timesteps]
layer(data).shape  # [64, 10, 15], [batch, out_features]

layer(torch.randn(32, 20, 25)).shape  # [32, 10, 25]

BTW。 在处理图像时,您应该使用 torch.nn.Conv2d 代替。

You should learn how convolutions work (e.g. see this answer) and some neural network basics (this tutorial from PyTorch).

Basically, Conv1d expects inputs of shape [batch, channels, features] (where features can be some timesteps and can vary, see example).

nn.Linear expects shape [batch, features] as it is fully connected and each input feature is connected to each output feature.

You can verify those shapes by yourself, for torch.nn.Linear:

import torch

layer = torch.nn.Linear(20, 10)
data = torch.randn(64, 20)  # [batch, in_features]
layer(data).shape  # [64, 10], [batch, out_features]

For Conv1d:

layer = torch.nn.Conv1d(in_channels=20, out_channels=10, kernel_size=3, padding=1)
data = torch.randn(64, 20, 15)  # [batch, channels, timesteps]
layer(data).shape  # [64, 10, 15], [batch, out_features]

layer(torch.randn(32, 20, 25)).shape  # [32, 10, 25]

BTW. As you are working with images, you should use torch.nn.Conv2d instead.

攒眉千度 2025-01-18 06:07:37

大多数Pytorch函数都处理批量数据,即它们接受大小(batch_size,shape)的输入。 @Szymon Maszke 已经发布了与此相关的答案。

因此,在您的情况下,您可以使用 unsqueezesqeeze 函数来添加和删除额外的维度。

这是示例代码:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(100, 512)
        self.conv1d1 = nn.Conv1d(in_channels=512, out_channels=64, kernel_size=1, stride=2)
        self.fc2 = nn.Linear(64, 128)

    def forward(self, x):
        x = self.fc1(x)
        x = x.unsqueeze(dim=2)
        x = F.relu(self.conv1d1(x))
        x = x.squeeze()

        x = self.fc2(x)

        return x


net = Net()

bsize = 4
inp   = torch.randn((bsize, 100))

out = net(inp)
print(out.shape)

Most of the Pytorch functions work on batch data i.e they accept input of size (batch_size, shape). @Szymon Maszke already posted answer related to that.

So in your case, you can use unsqueeze and sqeeze functions for adding and removing extra dimensions.

Here's the sample code:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(100, 512)
        self.conv1d1 = nn.Conv1d(in_channels=512, out_channels=64, kernel_size=1, stride=2)
        self.fc2 = nn.Linear(64, 128)

    def forward(self, x):
        x = self.fc1(x)
        x = x.unsqueeze(dim=2)
        x = F.relu(self.conv1d1(x))
        x = x.squeeze()

        x = self.fc2(x)

        return x


net = Net()

bsize = 4
inp   = torch.randn((bsize, 100))

out = net(inp)
print(out.shape)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文