使用直方图的分类数据
在其他地方找不到答案。
背景:
我有来自商业动态调查的数据,这是一个按公司特征汇总公司信息的数据集。我正在尝试估算公司规模分布。 现在,该数据包含 10 个企业规模类别、该类别中相应的企业数量以及就业水平。示例:
对于我的一生,我无法弄清楚如何将其转换为直方图来执行内核估计。快速查看文档并没有产生任何有用的信息,因为老实说,我真的不知道我在寻找什么。也许有人可以指出我正确的方向?
Couldn't find the answer elsewhere.
Background:
I have data from the Business Dynamics Survey, a dataset that aggregates information on firms by firms' characteristics. I am trying to approximate the firms size distribution.
Now, the data features 10 firm size categories, the corresponding amount of firms in that category, and the level of employment. Sample:
For the life of me I can't figure out how to transform that into an histogram to perform a kernel estimation. A quick look to the docs didn't yield any useful info, because honestly I don't really know what I am looking for. Maybe someone can point me in the right direction?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
你好,来到这里的未来互联网人。两种类似的方法来处理它。或者
:
为了更好地描述潜在密度,我正在关注这篇论文
https://journals.sagepub.com/doi/full/10.1177/0081175018782579# _i11
好祝你旅途愉快!
Hello future internet person who's landed here. Two similar ways to approach it. Either
Or
To better characterize the underlying density I'm following this paper:
https://journals.sagepub.com/doi/full/10.1177/0081175018782579#_i11
Good luck on your journey!