R,mitools::MIcombine,没有 p 值的原因是什么?
我目前正在 R 中运行一个带有 5 个乘法插补数据集的简单线性回归模型。
例如 model <- with(imp, lm(outcome ~ Exposure))
要汇集汇总估计,我可以使用以下命令来自 mitools 包的 summary(mitools::MIcombine(model))
。然而,这并没有给出 p 值的结果。我还可以使用 mouse 包中的命令 summary(pool(model))
,这确实会给出 p 值的结果。
因此,我想知道 MIcombine 不产生 p 值是否有具体原因?
I am currently running a simple linear regression model with 5 multiply imputed datasets in R.
E.g. model <- with(imp, lm(outcome ~ exposure))
To pool the summary estimates I could use the command summary(mitools::MIcombine(model))
from the mitools package. However, this does not give results for p-values. I could also use the command summary(pool(model))
from the mice package and this does give results for p-values.
Because of this, I am wondering if there is a specific reason why MIcombine does not produce p-values?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
浏览完文档后,mitools 库不提供 p 值似乎没有特殊原因。尽管如此,该包的重点是插补,而不是模型结果。
但是,您不需要这些软件包中的任何一个来查看结果以及每个模型的 p 值。我开始将其写为评论,但决定包含代码。如果您不知道...您可以使用基本 R 的
摘要
。我意识到mice
的输出是比较性的,mitools
也是如此。我认为提及这一点也很重要。如果您的调用的输出是
model
,那么这将起作用。After looking through the documentation, it doesn't seem like there is a particular reason that the
mitools
library doesn't provide p-values. Although, the package's focus is on imputation, not model results.However, you don't need either of these packages to see your results–along with the per model p-values. I started writing this as a comment but decided to include the code. If you weren't aware...you can use base R's
summary
. I realize that the output ofmice
is comparative, as ismitools
. I thought it was important enough to mention this, as well.If the output of your call is
model
, then this will work.